Polybios 1.3

Making History In PDF

Andreas Falkenhahn

Table of Contents

1 General information............. 1
1.1 Introduction.o 1
1.2 Terms and conditions. ...t 1
1.3 Requirements............ooiiuiiiiee i, 2
1.4 Installation......... ..o e 2

2 About Polybios............... 5
2.1 CreditS . ..ot 5
2.2 Frequently asked questions............... i i 5)
2.3 BFuture.o 6
2.4 HiStOTY .o oe et 6

3 Viewing PDFs................... 7
3.1 OVOIVIOW . o e et 7
3.2 Loading pages as vector brushes 7
3.3 Loading PDFsasanims..............ciiiiiiiiiiiiiiinnnn... 8

4 Creating PDFs................ 9
4.1 Coordinate System.couiuuiiiiii i 9
4.2 Graphics MOdettt 9
4.3 Painting paths........ .. i i 10
4.4 Painting texto 11
4.5 CO0lOTS . ottt 12
4.6 Font bypes. ..o viii i 12
4.7 Baseld fontS. . ..ot 13
4.8 Typel fontso 13
4.9 TrueType fonts.o 14
410 CID fonts . oot e 14
411 Encodings.........ooiiiimiiiii 14

5 Tutorial 19
5.1 Tutorial 19

6 General functions 21
6.1 pdf.CloseDocument.......... 21
6.2 pdf.CreateDocument 21
6.3 pdfDeviceToPage 21
6.4 pdf.FindNext.........oo i 23
6.5 pdfiFindPrev.... 23
6.6 pdfFindStart 24

6.7 pdfFreePage 25

ii

Polybios manual

6.8 pdf.GetBookmarksoiiiiiii 25
6.9 pdf.GetBoundedText ... 26
6.10 pdf.GetBrush i 27
6.11 pdf.GetBrushFromPage...........l 28
6.12 pdf.GetCharBox. ... 29
6.13 pdf.GetCharlndexAtPos..............c. .. 30
6.14 pdf.GetCharOrigin 30
6.15 pdf.GetCropBox.o 31
6.16 pdf.GetFindResult i 31
6.17 pdf.GetLastError.......... .o i 32
6.18 pdf.GetMediaBox ...ttt 33
6.19 pdf.GetMetaText.......c.ouiiii e 33
6.20 pdf.GetObjectType.oovnniii 34
6.21 pdf.GetPagelLabel i 35
6.22 pdf.GetPagelen......... ..o i 35
6.23 pdf.GetPagelinks i 36
6.24 pdf.GetRects . ..o 37
6.25 pdf.GetTexto 38
6.26 pdf.GetVersiono.iiiiiiiiiii i 38
6.27 pdfIsPDF. 39
6.28 pdf.LoadPage 39
6.29 pdf.OpenDocument........... ... 40
6.30 pdf.PageToDevicecouiiuiiiiiiiiiiii i, 40

Annotation methods........................... 43
7.1 annot:SetBorderStyle........ 43
7.2 annot:SetCMYKColor ... 44
7.3 annot:SetFreeText Annot2PointCalloutLine..................... 44
7.4 annot:SetFreeText Annot3PointCalloutLine..................... 45
7.5 annot:SetFreeText AnnotDefaultStyle........................... 45
7.6 annot:SetFreeText AnnotLineEndingStyle....................... 46
7.7 annot:SetGrayColor ... 46
7.8 annot:SetLineAnnotCaption, 47
7.9 annot:SetLineAnnotLeader 47
7.10 annot:SetLineAnnotPosition............. L. 48
7.11 annot:SetLinkAnnotBorderStyle 49
7.12 annot:SetLinkAnnotHighlightMode 49
7.13 annot:SetMarkupAnnotCloudEffect........................... 50
7.14 annot:SetMarkupAnnotCreationDate 50
7.15 annot:SetMarkupAnnotIntent................., 51
7.16 annot:SetMarkupAnnotInteriorCMYKColor................... 52
7.17 annot:SetMarkupAnnotInteriorGrayColor..................... 52
7.18 annot:SetMarkupAnnotInteriorRGBColor..................... 53
7.19 annot:SetMarkupAnnotInteriorTransparent 53
7.20 annot:SetMarkupAnnotPopup ...l 54
7.21 annot:SetMarkupAnnotQuadPoints........................... 54
7.22 annot:SetMarkupAnnotRectDiff, 55
7.23 annot:SetMarkupAnnotSubjecto il 55

7.24 annot:SetMarkupAnnotTitle.................................. 55
7.25 annot:SetMarkupAnnotTransparency 56
7.26 annot:SetNoColor ...t 56
7.27 annot:SetPopupAnnotOpened 57
7.28 annot:SetRGBColor......... ... 57
7.29 annot:SetTextAnnotIcon.oooiiiiiiiiinenne ... 58
7.30 annot:SetTextAnnotOpened, 58

Destination methods........................... 61
81 dest:SetFit ..o 61
8.2 dest:SetFitB. ... 61
83 dest:SetFitBH 61
8.4 dest:SetFitBV ... 62
85 dest:SetFitH. ... 62
8.6 dest:SetFitR. ... 63
8.7 dest:SetFitV .. 64
8.8 dest:SetX Y Z .o 64

Document methods 65
9.1 doc:AddPageo 65
9.2 doc:AddPageLabel........ ... o 65
9.3 doc:AttachFile 66
9.4 doc:CreateExtGState. ... 67
9.5 doc:CreatelmageFromBrush oL 67
9.6 doc:CreatelmageFromMem it 68
9.7 doc:CreateOutline....... 69
9.8 doC:iEree. ... 69
9.9 doc:GetCurrentEncoder 70
9.10 doc:GetCurrentPage......... ..o i 70
9.11 doc:GetEncoder....... 70
9.12 doC:GetError. . ..o 71
9.13 doc:GetErrorDetail o 71
9.14 doc:GetFont. ... 72
9.15 doc:GetInfoAttr 72
9.16 doc:GetPageByIndexccoiiiiiiiiiiiiiii ., 73
9.17 doc:GetPageLayout. ... 73
9.18 doc:GetPageMode 74
9.19 doc:GetViewerPreference 74
9.20 doc:InsertPage 75
9.21 doc:LoadFonto 75
9.22 doc:LoadJPEGImage. ... 76
9.23 doc:LoadPNGImagecoeiiiiii e 77
9.24 doc:LoadRawlmage......... ..o 78
9.25 doc:LoadTTFontcooi i 79
9.26 doc:LoadTypelFont i, 80
9.27 doc:ResetError. ... 80
9.28 doc:SaveToFileo 81

iii

v

Polybios manual

9.29 doc:SetCompressionMode. ... 81
9.30 doc:SetCurrentEncoder.......... i 82
9.31 doc:SetEncryptionModeo 83
9.32 doc:SetInfoAttr. ..o 83
9.33 doc:SetInfoDateAttr. ..o 84
9.34 doc:SetOpenAction.covviiiiiii 85
9.35 doc:SetPageLayout o 85
9.36 doc:SetPageMode ... 86
9.37 doc:SetPagesConfiguration...............ooooiiiiiiiiiii 87
9.38 doc:SetPassword i 88
9.39 doc:SetPermissiono 88
9.40 doc:SetViewerPreference............... 89
9.41 doc:UseCNSENCOdINgS. ..« vvvviiii e 90
9.42 doc:UseCNSFONtS ..o 91
9.43 doc:UseCNTEncodings ..o, 91
9.44 doc:UseCNTEFONtS . .o 92
9.45 doc:UseJPEncodingscooiuiiiiiiiiiiiiiiiiiiiiann 93
9.46 doc:UseJPFonts....... ... 93
9.47 doc:UseKREncodings............oooiiiiiiiiiiiiiiiiiii .. 94
9.48 doc:UseKRFonts ... 95
9.49 doc:UseUTFEncodingsccoiuiiiiiiiiiiiiiiiiinin... 96
10 Encoder methods............................. 97
10.1 encoder:GetByteTypeo 97
10.2 encoder:GetType . ..o 97
10.3 encoder:GetUnicode, 97
10.4 encoder:GetWritingMode it 98
11 ExtGState methods........................... 99
11.1 extgs:SetAlphaFill....... i 99
11.2 extgs:SetAlphaStroke........ ..o 99
11.3 extgs:SetBlendMode......... ... i 100
12 Font methods................................ 101
12,1 font:GetAScentt 101
12.2 font:GetBBOXo 101
12.3 font:GetCapHeight i 101
12.4 font:GetDescentttt 102
12.5 font:GetEncodingName.......... ... 102
12.6 font:GetFontName ..., 102
12.7 font:GetUnicodeWidth i i, 103
12.8 font:GetXHeight ...t 103
12.9 font:MeasureText ... 104

12.10 font:TextWidth 104

13 Image methods.............................. 107

13.1 image:AddSMask.o 107
13.2 image:GetBitsPerComponent 107
13.3 image:GetColorSpace()ooiuiiiiiiiiiii 107
13.4 image:GetHeight i i 108
13.5 image:GetSize. ..o 108
13.6 image:GetWidth 108
13.7 image:SetColorMask. i i 109
13.8 image:SetMaskImage ... 109
14 Outline methods............................. 111
14.1 outline:SetDestination.............ooiiiiiiie ... 111
14.2 outline:SetOpened.o 111
15 Pagemethods............................. ... 113
15.1 PAgEIATC . oo 113
15.2 page:BeginText ... 113
15.3 page:Circle. 114
15.4 page:Clip .ot 114
15.5 page:ClosePath...... 115
15.6 page:ClosePathEofillStrokeoo i .. 115
15.7 page:ClosePathFillStrokeo i i i 115
15.8 page:ClosePathStroke o i 116
15.9 page:Concat. ...t 116
15.10 page:CreateCircleAnnot, 117
15.11 page:CreateDestination. 118
15.12 page:CreateFreeTextAnnot, 118
15.13 page:CreateHighlight Annot............. 119
15.14 page:CreateLineAnnot ..., 119
15.15 page:CreateLinkAnnot 120
15.16 page:CreatePopupAnnot, 120
15.17 page:CreateProjectionAnnot. 121
15.18 page:CreateSquareAnnotoviriieiiineeninnneann. 121
15.19 page:CreateSquigglyAnnot, 122
15.20 page:CreateStampAnnot ... 122
15.21 page:CreateStrikeOutAnnot ..., 123
15.22 page:CreateTextAnnotoouiiiiiii i 124
15.23 page:CreateTextMarkupAnnot.................coovviiii. .. 125
15.24 page:CreateUnderlineAnnot 126
15.25 page:CreateURILinkAnnot ...t 126
15.26 page:CreateWidgetAnnot. 127
15.27 page:CurveTo 127
15.28 page:CurveTo2.t 128
15.29 page:CurveTod 128
15.30 page:Drawlmage ..ot 129
15.31 page:BEIlpse. ..o 129
15.32 page:EndPath...... 130

vi

15.33
15.34
15.35
15.36
15.37
15.38
15.39
15.40
15.41
15.42
15.43
15.44
15.45
15.46
15.47
15.48
15.49
15.50
15.51
15.52
15.53
15.54
15.55
15.56
15.57
15.58
15.59
15.60
15.61
15.62
15.63
15.64
15.65
15.66
15.67
15.68
15.69
15.70
15.71
15.72
15.73
15.74
15.75
15.76
15.77
15.78
15.79
15.80

Polybios manual

page:EndTexto 130
Page:EOCHD . oot 130
page:Eofill ... 131
page:EofillStroke 131
page:ExecuteXObject 131
page:Fill 132
page:FillStroke 132
page:GetCharSpacet 133
page:GetCMYKFill 133
page:GetCMYKStroke ... 134
page:GetCurrentFont.......... 134
page:GetCurrentFontSize............. 135
page:GetCurrentPos. ... 135
page:GetCurrentTextPos i, 135
page:GetDash....... .. o i 136
page:GetFillingColorSpace ..o, 136
page:GetFlat. 137
page:GetGMode. 137
page:GetGrayFill.... ... oo 137
page:GetGrayStroke........ ... 138
page:GetGStateDepth........ 138
page:GetHeight o 139
page:GetHorizontalScaling. oL 139
page:GetLineCap. ... 139
page:GetLineJoin 140
page:GetLineWidth 140
page:GetMiterLimit 140
page:GetRGBFill........ ... 141
page:GetRGBStroke. o 141
page:GetStrokingColorSpaceoovvviiiiniiiinn.. 142
page:GetTextLeading. ... 142
page:GetTextMatrix. 142
page:GetTextRenderingMode. ...t 143
page:GetTextRise ... 143
page:GetTransMatrix ...t 144
page:GetWidth. 144
page:GetWordSpacet 145
page:GRestore ... o 145
PAGEIGSAVE . ..ttt 145
page:LineTo. 146
page:MeasureText. ... 147
page:MoveTextPos ... 147
page:MoveTo. . ..o 148
page:MoveToNextLine................ooi ... 148
page:Rectangle. 148
page:SetCharSpace. ... 149
page:SetCMYKFill. ... 149

page:SetCMYKStroke. ... i 150

vii

15.81 page:SetDash ... 150
15.82 page:SetExtGState. ... 151
15.83 page:SetFlat ... 151
15.84 page:SetFontAndSize...... ... 151
15.85 page:SetGrayFillo o 152
15.86 page:SetGrayStrokeo 152
15.87 page:SetHeight...... ... i 152
15.88 page:SetHorizontalScalingo i 153
15.89 page:SetLineCap ...t 153
15.90 page:SetLineJoin........ ..o i 154
15.91 page:SetLineWidth.......o i 154
15.92 page:SetMiterLimitooo i 155
15.93 page:SetRGBFill 155
15.94 page:SetRGBStroke ... i 155
15.95 page:SetRotate....... ... 156
15.96 page:SetSize 156
15.97 page:SetSHdeShowo 158
15.98 page:SetTextLeading ... 158
15.99 page:SetTextMatrixo 159
15.100 page:SetTextRenderingModet 159
15.101 page:SetTextRiSe.ovuuii 160
15.102 page:SetWidth..... ..o 160
15.103 page:SetWordSpacecovvviiiiiiiii 161
15.104 page:SetZoOmi.ttt 161
15.105 page:ShowText.o e 161
15.106 page:ShowTextNextLine.............ooooiiiiii ... 162
15.107 page:Strokeo 162
15.108 page:TextOuto 163
15.109 page:TextRecto 163
15.110 page:TextWidth...... ..o i 164
Appendix A Licenses 165
A1l LibHaru Heense........oouuiiiii i 165
A2 LuaHPDF license..........ooiiiiiii i, 165
A3 PDFium license.o 165

1 General information

1.1 Introduction

Polybios is a plugin for Hollywood that allows you to easily create PDF documents from
Hollywood scripts. On top of that, Polybios can also open existing PDF documents and
convert their pages into Hollywood brushes. In fact, when converting PDF pages into
Hollywood brushes, Polybios will create vector brushes for you which can be scaled, rotated
and transformed without any losses in quality (unless bitmap graphics are embedded inside
the PDF document of course).

Polybios comes with over 200 functions for creating PDF documents of all sorts. It supports
graphics primitives, text in different encodings including Unicode, embedding fonts as well as
images and Hollywood brushes inside PDF documents. On top of that Polybios supports the
creation of password-protected PDF documents, encrypted PDF documents, compression,
file attachments, annotations, extended graphics states, info dictionaries, RGB, CMYK and
gray color spaces, different viewing modes, transition effects, links, and permission flags for
PDF documents. Transformation of PDF objects is fully supported too. Finally, Polybios
can also create PDF documents with an easy-to-navigate outline that can be used as a table
of contents as well.

Polybios also has support for extracting text from PDF pages, getting all bookmarks in a
document, handling links on PDF pages, and it is also possible to search pages. Furthermore,
Polybios allows you to query the position of text on PDF pages, making it possible to
implement text marking functionality, for instance.

Polybios comes with extensive documentation in various formats like PDF (of course),
HTML, AmigaGuide, and CHM that contains detailed descriptions about all functions and
methods offered by the plugin. On top of that, over 25 example scripts are included in the
distribution archive to get you started really quickly.

All of this makes Polybios the ultimate PDF tool for Hollywood that contains everything
to empower you to make history in PDF!

1.2 Terms and conditions

Polybios is (© Copyright 2013-2020 by Andreas Falkenhahn (in the following referred to as
"the author"). All rights reserved.

The program is provided "as-is" and the author cannot be made responsible of any possible
harm done by it. You are using this program absolutely at your own risk. No warranties
are implied or given by the author.

This plugin may be freely distributed as long as the following three conditions are met:
1. No modifications must be made to the plugin.
2. It is not allowed to sell this plugin.
3. If you want to put this plugin on a coverdisc, you need to ask for permission first.

This software uses LibHaru by Takeshi Kanno and Antony Dovgal. See Section A.1 [LibHaru
license|, page 165, for details.

2 Polybios manual

This software uses LuaHPDF by Kurt Jung. See Section A.2 [LuaHPDF license], page 165,
for details.

This software uses PDFium by the PDFium authors. See Section A.3 [PDFium license]
page 165, for details.

)

All trademarks are the property of their respective owners.

DISCLAIMER: THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDER AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BE-
ING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PAR-
TIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

1.3 Requirements

— Hollywood 7.1 or better

— on macOS, Polybios requires at least 10.9 on x86 and x64 systems and 10.5 on PowerPC
Systems

— on Android, at least version 5.0 is required

— if you use WinUAE, you need at least WinUAE 4.2.1 or Polybios can crash because of
a bug in WinUAE’s 68020 emulation

1.4 Installation

Installing Polybios is straightforward and simple: Just copy the file polybios.hwp for
the platform of your choice to Hollywood’s plugins directory. On all systems except
on AmigaOS and compatibles, plugins must be stored in a directory named Plugins
that is in the same directory as the main Hollywood program. On AmigaOS and
compatible systems, plugins must be installed to LIBS:Hollywood instead. On macOS,
the Plugins directory must be inside the Resources directory of the application bundle,
i.e. inside the HollywoodInterpreter.app/Contents/Resources directory. Note that
HollywoodInterpreter.app is stored inside the Hollywood.app application bundle itself,
namely in Hollywood.app/Contents/Resources.

Afterwards merge the contents of the Examples folder with the Examples folder that is part
of your Hollywood installation. All Polybios examples will then appear in Hollywood’s GUI
and you can launch and view them conveniently from the Hollywood GUI or IDE.

On Windows you should also copy the file Polybios.chm to the Docs directory of your
Hollywood installation. Then you will be able to get online help by pressing F1 when the
cursor is over a Polybios function in the Hollywood IDE.

On Linux and macOS copy the Polybios directory that is inside the Docs directory of the
Polybios distribution archive to the Docs directory of your Hollywood installation. Note
that on macOS the Docs directory is within the Hollywood.app application bundle, i.e. in
Hollywood.app/Contents/Resources/Docs.

2 About Polybios

2.1 Credits

Polybios was written by Andreas Falkenhahn, based on work done by Takeshi Kanno,
Antony Dovgal, Kurt Jung and the PDFium authors. Special thanks go to Sebastian Bauer
for adding rudimentary wide character support to clib2 so that PDFium can be compiled on
AmigaOS 4 as well. Further thanks go to Stefan "Bebbo" Franke for maintaining a recent
version of gce that can compile for the Motorola 680x0 series.

If you need to contact me, you can either send an e-mail to andreas@airsoftsoftwair.de
or use the contact form on http://www.hollywood-mal. com.

2.2 Frequently asked questions

This section covers some frequently asked questions. Please read them first before asking
on the mailing list or forum because your problem might have been covered here.

Q: How can I modify existing PDF documents?

A: That’s currently not supported but planned for a future version of Polybios.

Q: Why doesn’t Polybios support the conversion of PDF pages to vector brushes on AROS?

A: That’s because PDFium requires a compiler capable of handling C++11 and wide char-
acters which is currently unavailable for AROS. But this will hopefully change in the future
so that AROS users can convert PDF pages into Hollywood brushes too.

Q: Why aren’t Chinese/Japanese/Korean (CJK) characters drawn correctly in my docu-
ment?

A: Make sure you have a TrueType font that has CJK support installed. For example,
install Konatu on your system and CJK characters should be drawn correctly.

Q: The 68k version of Polybios doesn’t work under 0S4 emulation.

A: Tt seems that the OS4 JIT has problems dealing with Polybios’ PDF renderer which is
a 5 MB binary. If you really want to use the 68k version of Polybios on OS4, you need to
disable JIT for the file LIBS:Hollywood /Polybios.ext. Then it should work.

Q: Is there a Hollywood forum where I can get in touch with other users?

A: Yes, please check out the "Community" section of the official Hollywood Portal online
at http://www.hollywood-mal. com.

Q: Where can I ask for help?

A: There’s a lively forum at http://forums.hollywood-mal.com and we also have a mailing
list which you can access at airsoft_hollywood@yahoogroups.com. Visit http://www.
hollywood-mal.com for information on how to join the mailing list.

andreas@airsoftsoftwair.de
http://www.hollywood-mal.com
http://www.hollywood-mal.com
http://forums.hollywood-mal.com
airsoft_hollywood@yahoogroups.com
http://www.hollywood-mal.com
http://www.hollywood-mal.com

6 Polybios manual

Q: I have found a bug.

A: Please post about it in the dedicated sections of the forum or the mailing list.

2.3 Future

Here are some things that are on my to do list:
— add support for rendering PDF pages on AROS
— add support for editing existing PDF documents

Don’t hesitate to contact me if Polybios lacks a certain feature that is important for your
project.

2.4 History

Please see the file history.txt for a complete change log of Polybios.

3 Viewing PDFs

3.1 Overview

There are two different methods of viewing PDF documents with Polybios in Hollywood:
You can either load individual PDF pages as vector brushes or you can load an entire PDF
document as a Hollywood animation in which the document’s pages are simply mapped to
individual anim frames. Whatever way you choose, Polybios will always map PDF pages to
vector objects in Hollywood so that they can be scaled, rotated, and transformed without
any losses in quality.

To use Polybios from your Hollywood script, you first need to initialize the plugin at the
beginning of your script by using the following line:

OREQUIRE "polybios"

There are also some additional arguments that you can pass to the @QREQUIRE preprocessor
command. The following arguments are currently available:

NoVectorAnim:
When loading PDFs as Hollywood anims, Polybios will automatically create
vector animations if the Hollywood version used with Polybios supports it. If
you don’t want that, set this tag to True. Note that if you set this tag to True,
there will be quality losses when scaling or transforming the animation that
contains the PDF pages. Defaults to False. (V1.3)

3.2 Loading pages as vector brushes

To load PDF pages as vector brushes you have to open the PDF document using the
pdf . OpenDocument () function and then convert the desired pages to Hollywood vector
brushes using the pdf .GetBrush() command.

Here is an example:

pdf .OpenDocument (1, "test.pdf")
pdf.GetBrush(1, 1, 1)
DisplayBrush(1l, #CENTER, #CENTER)
FreeBrush(1)

pdf .CloseDocument (1)

The code above will open the PDF document named test.pdf and convert its first page
to a vector brush. It will then show this vector brush in the center of the display. Note
that the vector brush will still depend on the PDF document so it is not allowed to call
pdf .CloseDocument () on the document while you still need the brush. That’s why we free
the brush first and close the document afterwards. Otherwise there will be an error.

You can find out the number of pages in the PDF document by first getting the object type
for PDF documents and then using Hollywood’s GetAttribute () function, like so:

PDF_DOCUMENT = pdf.GetObjectType()
numpages = GetAttribute (PDF_DOCUMENT, 1, #PDFATTRPAGES)

The code above gets the number of pages from the PDF document that uses the identifier
1 and stores it in the variable numpages.

8 Polybios manual

3.3 Loading PDF's as anims

Alternatively, Polybios offers to load an entire PDF document into a Hollywood anim object.
You can then access the individual pages by simply obtaining the anim’s frames.

Here’s how to load a PDF document as a Hollywood anim:

LoadAnim(1, "test.pdf", {FromDisk = Truel})

For Local k = 1 To GetAttribute (#ANIM, 1, #ATTRNUMFRAMES)
DisplayAnimFrame (1, #CENTER, #CENTER, k)
WaitLeftMouse

Next

The code above shows all pages of a PDF document. You need to press the left mouse
button to skip to the next page.

Note that we set FromDisk tag to True in our LoadAnim() call. This is very important
because otherwise all PDF pages will be loaded and buffered in memory which can be a
huge waste with larger PDF documents.

Of course, you could also load the PDF document with the @QANIM preprocessor command
instead of LoadAnim().

4 Creating PDF's

4.1 Coordinate system

Note that PDF documents use a different coordinate system than Hollywood. In the default
coordinate system of PDF, shown below, the lower-left corner is at coordinates (0, 0), and
the upper-right corner is at coordinates (width, height). The default resolution is 72dpi. In
Hollywood the upper-left corner is at (0, 0).

(width, height)

()

0.0

An application can change the coordinate system by invoking page:Concat (). For example,
if an application invokes page:Concat (0.5, 0, 0, 0.5, 100, 100) in the default state, the
coordinate system shown above is transformed to the new system shown in the figure below:

(width, height)

L
b
¥
0.0
T

4.2 Graphics mode
In Polybios, each page object maintains a flag named "graphics mode". The graphics mode
corresponds to the graphics object of the PDF specification.

The graphics mode is changed by invoking particular functions. The functions that can be
invoked are decided by the value of the graphics mode.

10 Polybios manual

The following figure shows the relationships of the graphics mode.

HPDF_GMODE_PAGE_DESCRIPTION

F

Allowed operators:
.General graphics state
Special graphics state
.Color

.Text state |

[HPDF_Page_BeginText{)

HPDF_Page_MoveTo()
HPDF_Page_Rectangle)
HPDF_Page_Arcq)
HPDF_Page_Circled) -
HPDF_GMODE_TEXT_OBJECT

HPDF_Page_EndText{)

o Allowed operators:
Path Painting . Graphics state
Operators . Color
. Text state

b i

HPDF_GMODE_PATH_OB.JECT

. Text-showing
. Text-positioning

Allowed operators:
. Path construction

4.3 Painting paths

A path is composed of straight and curved line segments. Paths define shapes and regions.
Vector graphics are drawn by the following steps:

1. Set graphics states (such as line width, dash pattern, color...) using graphics state
operators or color operators.

2. Start new path using page:MoveTo(), page:Rectangle(), page:Arc(), or
page:Circle().

3. Append to path using path construction operators.

Stroke or paint the path using path painting operators.

Here is a list of graphics state operators:

page:Concat ()
page:SetDash()
page:SetFlat ()
page:SetLineCap ()
page:SetLineJoin()
page:SetLineWidth ()
page:SetMiterLimit ()

Chapter 4: Creating PDFs 11

Here is a list of color operators:

page:SetCMYKFill ()
page: SetCMYKStroke ()
page:SetGrayFill()
page:SetGrayStroke ()
page:SetRGBFill ()
page:SetRGBStroke ()

Here is a list of path construction operators:

page:Arc()
page:Circle()
page:CurveTo ()
page:CurveTo2()
page:CurveTo3()
page:LineTo ()
page :MoveTo ()
page:Rectangle ()

Here is a list of path painting operators:

page:ClosePathFillStroke ()
page:ClosePathEofillStroke ()
page:ClosePathStroke ()
page:Eofill()
page:EofillStroke()
page:EndPath ()

page:Fill()
page:FillStroke ()
page:Stroke ()

4.4 Painting text
Text is drawn by the following steps:

1.
2.

S L el

Start drawing text by invoking page:BeginText ().

Set text states (such as font, filling color...) using text state operators or color operators.
At least page:SetFontAndSize () must be invoked once before invoking text painting
operators.

Set text positioning by invoking text positioning operators.
Show text by invoking text painting operators.
Repeat steps 2 to 4 if necessary.

Finish drawing text by invoking page:EndText ().

12

The figure below explains text positioning:

3,9

Polybios manual

You can see that, in contrast to Hollywood’s coordinate system, the PDF document’s co-
ordinate system for placing text starts at the bottom and extends upwards.

Here is a list of text state operators:

page:
page:
page:
page:
page:
page:
page:

Here is a list of text positioning operators:

SetCharSpace ()
SetFontAndSize ()
SetHorizontalScaling()
SetTextLeading()
SetTextRenderingMode ()
SetTextRise ()
SetWordSpace ()

page:MoveTextPos ()

page:

SetTextMatrix ()

Here is a list of text painting operators:

page:
page:

ShowText ()
ShowTextNextLine ()

page: TextOut ()
page:TextRect ()

4.5 Colors

Colors are specified using three real numbers (i.e. ones with a decimal point) in the form R
G B where each number defines the amount of red (R), green (G) and blue (B) in a color.

The valid numbers are from 0.0 to 1.0 inclusive.

4.6 Font types

There are several types of fonts available in Polybios.

Basel4 font:

Typel font:

The built-in font of PDF. Available in all viewer applications.

A font format used by PostScript.

TrueType font:

CID font: Font format for multi-byte characters. Developed by Adobe.

Widely used outline font format.

Chapter 4: Creating PDFs 13

Hollywood scripts can use doc:GetFont () to get a font handle. Before that, one of the
following functions must be used to load the font before invoking doc:GetFont (): (except
for Basel4 fonts, those are always available and needn’t be loaded)

HPDF_LoadTypelFontFromFile ()
HPDF_LoadTTFontFromFile()
HPDF_LoadTTFontFromFile2()
HPDF_UseCNSFonts ()
HPDF_UseCNTFonts ()
HPDF_UseJPFonts ()
HPDF_UseKRFonts ()

4.7 Basel4 fonts

Basel4 fonts are built into PDF and all viewer applications can display these fonts. An
application can get a Basel4 font handle any time by invoking doc:GetFont (). PDF files
which use basel4 fonts are smaller than those which use other type of fonts. Moreover,
PDF processing is faster because there is no need to load external fonts. However, Basel4
fonts are only able to display the Latin-1 character set. To use other character sets, an
application must use other fonts.

The following are built-in Basel4 fonts. They are available in every PDF viewer:

Courier
Courier-Bold
Courier-0Oblique
Courier-BoldOblique
Helvetica
Helvetica-Bold
Helvetica-Oblique
Helvetica-BoldOblique
Times-Roman
Times-Bold
Times-Italic
Times-BoldItalic
Symbol

ZapfDingbats

4.8 Typel fonts

Typel is a format of outline fonts developed by Adobe. An AFM file is necessary to use
an external Typel font with Polybios. When a Hollywood script uses an external Typel
font, it has to invoke doc:LoadTypelFont () before invoking doc:GetFont (). The return
value of doc:LoadTypelFont () is used as the font name parameter of doc:GetFont (). If a
PFA /PFB file is specified when invoking doc:LoadTypelFont (), the glyph data of the font
is embedded into the PDF file. Otherwise, only metrics data in AFM file is embedded.

Here is an example:

fontname = doc:LoadTypelFont("a0100131.afm", "a0100131.pfb")
hfont = doc:GetFont(fontname, "CP1250")
page:SetFontAndSize (hfont, 10.5)

14 Polybios manual

4.9 TrueType fonts

Polybios can use TrueType fonts. There are two types of TrueType fonts: The first format,
which uses the ".ttf" extension, contains only one font in its file. The second format, which
uses the ".ttc" extension, contains multiple fonts in its file. That is why doc:LoadTTFont ()
has a parameter which is used to specify the index of the font to load. If the additional
parameter embedding is set to True when invoking doc:LoadTTFont (), the subset of the
font is embedded into the PDF file. If not, only the marix data is stored in the PDF file.
In this case a viewer application may use an alternative font if it cannot find the font.

Here is an example:

fontname = doc:LoadTTFont("arial.ttf", True)

hfont = doc:GetFont(fontname, "CP1250")

page:SetFontAndSize (hfont, 10.5)
Note that Polybios can use only TrueType fonts which have a Unicode cmap and one of
the following tables: "OS/2", "cmap", "cvt ", "fpgm", "glyf", "head", "hhea", "hmtx",
"loca" "maxp", "name", "post", "prep".

4.10 CID fonts

CID fonts are a multi-byte character font format developed by Adobe. Two simplified
Chinese fonts, one traditional Chinese fonts, four Japanese fonts, and four Korean fonts are
available in Polybios. Hollywood scripts have to invoke the following functions once before
using CID fonts:
doc:UseCNSFonts ()

Makes simplified Chinese fonts (SimSun, SimHei) become available.

doc:UseCNTFonts ()
Makes traditional Chinese fonts (MingLiU) become available.

doc:UseJPFonts ()
Makes Japanese fonts (MS-Mincyo, MS-Gothic, MS-PMincyo, MS-PGothic)
become available.

doc:UseKRFonts ()
Makes Korean fonts (Batang, Dotum, BatangChe, DotumChe) become avail-
able.

Here is an example:

doc:UseJPFonts ()

doc:UseJPEncodings ()

hfont = doc:GetFont("MS-Mincyo", "90ms-RKSJ-H")
page:SetFontAndSize (hfont, 10.5)

4.11 Encodings

The following single-byte encodings are available in Polybios. Hollywood scripts can get an
encoding handle by using doc:GetEncoder():

StandardEncoding
The default encoding of PDF

Chapter 4: Creating PDFs 15

MacRomanEncoding
The standard encoding of macOS

WinAnsiEncoding
The standard encoding of Windows

FontSpecific
Use the built-in encoding of a font

IS08859-2
Latin Alphabet No.2

IS08859-3
Latin Alphabet No.3

IS08859-4
Latin Alphabet No.4

IS08859-5
Latin Cyrillic Alphabet

IS08859-6
Latin Arabic Alphabet

IS08859-7
Latin Greek Alphabet

IS08859-8
Latin Hebrew Alphabet

I1S08859-9
Latin Alphabet No. 5

IS08859-10
Latin Alphabet No. 6

IS08859-11
Thai, TIS 620-2569 character set

IS08859-13
Latin Alphabet No. 7

IS08859-14
Latin Alphabet No. 8

IS08859-15
Latin Alphabet No. 9

IS08859-16
Latin Alphabet No. 10

CP1250 Microsoft Windows Codepage 1250
CP1251 Microsoft Windows Codepage 1251

EE)
Cyrl)
ANSI)
Greek)

CP1252 Microsoft Windows Codepage 1252
CP1253 Microsoft Windows Codepage 1253

~~ o~

16 Polybios manual

CP1254 Microsoft Windows Codepage 1254 (Turk)
CP1255 Microsoft Windows Codepage 1255 (Hebr)
CP1256 Microsoft Windows Codepage 1256 (Arab)
CP1257 Microsoft Windows Codepage 1257 (BaltRim)
CP1258 Microsoft Windows Codepage 1258 (Viet)
KOI8-R Russian Net Character Set

The following multi-byte encodings are available in Polybios:
GB-EUC-H EUC-CN encoding

GB-EUC-V Vertical writing version of GB-EUC-H

GBK-EUC-H
Microsoft Code Page 936 (IfCharSet 0x86) GBK encoding
GBK-EUC-V
Vertical writing version of GBK-EUC-H
ETen-B5-H
Microsoft Code Page 950 (IfCharSet 0x88) Big Five character set with ETen
extensions

ETen-B5-V
Vertical writing version of ETen-B5-H

90ms-RKSJ-H
Microsoft Code Page 932, JIS X 0208 character

90ms-RKSJ-V
Vertical writing version of 90ms-RKSJ-V

90msp-RKSJ-H
Microsoft Code Page 932, JIS X 0208 character (proportional)

EUC-H JIS X 0208 character set, EUC-JP encoding
EUC-V Vertical writing version of EUC-H

KSC-EUC-H
KS X 1001:1992 character set, EUC-KR encoding

KSC-EUC-V
Vertical writing version of KSC-EUC-V

KSCms-UHC-H
Microsoft Code Page 949 (IfCharSet 0x81), KS X 1001:1992 character set plus
8822 additional hangul, Unified Hangul Code (UHC) encoding (proportional)

KSCms-UHC-HW-H
Microsoft Code Page 949 (1fCharSet 0x81), KS X 1001:1992 character set plus
8822 additional hangul, Unified Hangul Code (UHC) encoding (fixed width)

KSCms-UHC-HW-V
Vertical writing version of KSCms-UHC-HW-H

17

UTF-8 UTF-8 encoding.

A Hollywood script has to invoke one of the following functions before using multi-byte
encodings:

doc:UseCNSEncodings ()
It makes simplified Chinese encodings (GB-EUC-H, GB-EUC-V, GBK-EUC-H,
GBK-EUC-V) become available.

doc:UseCNTEncodings ()

Makes traditional Chinese encodings (ETen-B5-H, ETen-B5-V) become avail-
able.

doc:UseJPEncodings ()
Makes Japanese encodings (90ms-RKSJ-H, 90ms-RKSJ-V, 90msp-RKSJ-H,
EUC-H, EUC-V) become available.

doc:UseKREncodings ()
Makes Korean encodings (KSC-EUC-H, KSC-EUC-V, KSCms-UHC-H,
KSCms-UHC-HW-H, KSCms-UHC-HW-V) become available.

doc:UseUTFEncodings ()
Makes UTF-8 encoding become available.

19

5 Tutorial

5.1 Tutorial

This tutorial will teach you how to create your first PDF document with Polybios. The
PDF document will contain two pages, one with a circle and one with a "Hello World" text.

First, you need to create a document object. This is done by calling pdf . CreateDocument ()

which creates a document object for you. The document object handle which is returned
by pdf.CreateDocument () is then used in the following steps.

doc = pdf.CreateDocument ()
As a second step you can set some document attributes. For example, here we set compres-
sion, encryption, page mode, and a password:

; set compression mode
doc:SetCompressionMode (#HPDF_COMP_ALL)

; set page mode to use outlines
doc:SetPageMode (#HPDF_PAGE_MODE_USE_OUTLINE)

; set password
doc:SetPassword("owner", "user")

After setting document attributes call doc:AddPage () to add a page to the document. The
page handle returned is used in later operations on the page.

pagel = doc:AddPage()
To insert a new page before an existing page, doc:InsertPage(). For example, to insert
page0 before pagel, do the following:

page0 = doc:InsertPage(pagel)
After creating a new page, you can set some page attributes if necessary. Here we set the
page size to B5 and the orientation to landscape:

pagel:SetSize (#HPDF_PAGE_SIZE_B5, #HPDF_PAGE_LANDSCAPE)

Now that we have set up everything we can start adding content to the page. For example,
this is how we add a "Hello World" text to the page:

font = doc:GetFont("Times-Roman")
page0:SetFontAndSize(font, 24)
page0:BeginText ()

page0:TextOut (60, 60, "Hello World!")
page0:EndText ()

We can also draw graphics primitives to the page, for example a filled circle:

pagel:SetRGBFill(1.0, 0, 0)
pagel:MoveTo (100, 100)
pagel:LineTo (100, 180)
pagel:Circle(100, 100, 80)
pagel:Fill()

20 Polybios manual

When you’re done adding content to your pages, you’ll probably want to save the PDF
document to disk. This is possible by using the doc:SaveToFile() function. Here is how
to save our PDF document:

doc:SaveToFile("test.pdf")
Now that we are finished, we have to free all resources belonging to the document object.
This is done by calling the doc:Free() method, like so:

doc:Free()
Note that now that we have freed the document and all of its resources, we must no longer
use any handles belonging to this document. In our case this means that we must no longer

access the following handles: doc, page0, pagel, and font. Thus, it is a good idea to set
them to Nil so that Hollywood’s garbage collector can kill them:

doc = Nil

page0 = Nil
pagel = Nil
font = Nil

Of course, you can also declare them as local variables and then they will be eaten by the
garbage collector automatically once they become inaccessible.

That’s it, congratulations, you have just created your first PDF document with Polybios!

21

6 General functions

6.1 pdf.CloseDocument

NAME

pdf.CloseDocument — close PDF document
SYNOPSIS

pdf .CloseDocument (id)
FUNCTION

This function closes a document opened using pdf .OpenDocument () and frees all of its
resources.

Note that this function must only be wused for documents opened using
pdf . OpenDocument (). Documents created using pdf .CreateDocument () must be freed
using the doc:Free() method.

Also note that pdf.CloseDocument () must not be called before all vector brushes ob-
tained via pdf.GetBrush() from the document have been freed.

INPUTS
id identifier of the PDF document to be closed

6.2 pdf.CreateDocument

NAME

pdf.CreateDocument — create a new PDF document
SYNOPSIS

doc = pdf.CreateDocument ()
FUNCTION

pdf .CreateDocument () creates a new document object and returns its handle. You can
then use all documents methods with this handle. On failure, Nil is returned.

When you’re done with your document, don’t forget to call doc:Free() on it to free all
of its resources.

INPUTS

none

RESULTS

doc handle to a document

6.3 pdf.DeviceToPage

NAME
pdf.DeviceToPage — convert screen coordinates to page coordinates (V1.2)

22

SYNOPSIS

Polybios manual

X, y = pdf.DeviceToPage(id, page, startx, starty, sizex, sizey, rotate,

FUNCTION

devicex, devicey)

This function can be used to convert the screen coordinates of the point specified by
devicex and devicey to page coordinates.

The rotate argument can be used to specify the page orientation. This can be set to
the following special values:

0:
1:
2:
3:

Normal.
Rotated 90 degrees clockwise.
Rotated 180 degrees.

Rotated 90 degrees counter-clockwise.

The page to use must be specified in the page argument. It must be a number in the
range of 1 to the total number of pages in the document and the page must have been
previously loaded using pdf .LoadPage (). The PDF document specified by id must have
been previously opened using pdf .OpenDocument ().

The page coordinate system has its origin at the left-bottom corner of the page, with
the X-axis on the bottom going to the right, and the Y-axis on the left side going up.
Note that this coordinate system can be altered when you zoom, scroll, or rotate a page,
however, a point on the page should always have the same coordinate values in the page
coordinate system.

The device coordinate system is device dependent. For screen devices, its origin is at the
left-top corner of the window.

INPUTS
id
page
startx
starty
sizex
sizey
rotate
devicex

devicey

RESULTS

X

y

identifier of the PDF document to use

page number to use (starting from 1)

left pixel position of the display area in device coordinates
top pixel position of the display area in device coordinates
horizontal size (in pixels) for displaying the page

vertical size (in pixels) for displaying the page

page orientation (see above for possible values)

x value in device coordinates to be converted

y value in device coordinates to be converted

converted x value in page coordinates

converted y value in page coordinates

Chapter 6: General functions 23

6.4 pdf.FindNext

NAME

pdf.FindNext — find next instance of search string (V1.1)
SYNOPSIS

res = pdf.FindNext(id, page)
FUNCTION

This function can be used to continue a search operation initiated by pdf.FindStart().
Specifically, pdf.FindNext() will find the next occurrence of the search string
passed to pdf.FindStart(). If another instance of the search string could be found,
pdf .FindNext () will return True and you can get the information about where the
string was found using pdf .GetFindResult (). Otherwise, False is returned.

The page to use must be specified in the page argument. It must be a number in the
range of 1 to the total number of pages in the document and the page must have been
previously loaded using pdf .LoadPage () with the text argument set to True. The PDF
document specified by id must have been previously opened using pdf . OpenDocument ().

INPUTS
id identifier of the PDF document to use
page page number to search (starting from 1)
RESULTS
res True if the search string could be found, False otherwise

6.5 pdf.FindPrev

NAME

pdf.FindPrev — find previous instance of search string (V1.1)
SYNOPSIS

res = pdf.FindPrev(id, page)
FUNCTION

This function can be used to continue a search operation initiated by pdf.FindStart().
Specifically, pdf.FindPrev() will find the previous occurrence of the search string
passed to pdf.FindStart(). If another instance of the search string could be found,
pdf .FindPrev() will return True and you can get the information about where the
string was found using pdf.GetFindResult (). Otherwise, False is returned.

The page to use must be specified in the page argument. It must be a number in the

range of 1 to the total number of pages in the document and the page must have been

previously loaded using pdf .LoadPage () with the text argument set to True. The PDF

document specified by id must have been previously opened using pdf . OpenDocument ().
INPUTS

id identifier of the PDF document to use

page page number to search (starting from 1)

24 Polybios manual

RESULTS

res True if the search string could be found, False otherwise

6.6 pdf.FindStart

NAME
pdf FindStart — initiate search operation (V1.1)

SYNOPSIS
pdf .FindStart(id, page, s$[, flags, idx])

FUNCTION
This function can be used to start a new search operation on the page specified by page
in the document specified by id. You have to pass the string that the page should be
searched for in the s$ argument. The optional argument flags can be used to configure
additional options for the search operation. The flags parameter can be a combination
of the following special constants:

#PDFFIND_MATCHCASE:
If this flag is set, the search operation will be done in a case-sensitive way.

#PDFFIND_MATCHWHOLEWORD:
If this flag is set, a search result is only triggered if s$ matches a whole word.

By default, the search operation starts at the beginning of the page. You can change
this by passing a character index to start the search at in the optional idx parameter.
Note that character indices start at 0. Passing -1 in the idx parameter will start the
search at the end of the page.

The page to use must be specified in the page argument. It must be a number in the
range of 1 to the total number of pages in the document and the page must have been
previously loaded using pdf .LoadPage () with the text argument set to True. The PDF
document specified by id must have been previously opened using pdf . OpenDocument ().

After you have called pdf .FindStart () to initiate the search operation, you then have to
call either pdf .FindNext () or pdf.FindPrev() to actually execute the search operation.

INPUTS
id identifier of the PDF document to use
page page number to search (starting from 1)
s$ string to search for
flags optional: combination of flags specifying additional options (see above) (de-

faults to 0)

idx optional: character index to start search at (defaults to 0)

Chapter 6: General functions 25

6.7 pdf.FreePage

NAME

pdf.FreePage — free PDF document page (V1.1)
SYNOPSIS

pdf .FreePage(id, page)
FUNCTION

This function can be used to free a PDF document page loaded by pdf.LoadPage().
You have to pass the identifier of the PDF document to use in the id argument and the
page number to free in the page argument. The page number must be in the range of 1
to the total number of pages in the document. The PDF document specified by id must
have been opened using pdf . OpenDocument () before.

INPUTS
id identifier of the PDF document to use
page page number to free (starting from 1)

6.8 pdf.GetBookmarks

NAME

pdf.GetBookmarks — get all bookmarks in a document (V1.1)
SYNOPSIS

t = pdf.GetBookmarks(id)
FUNCTION

This function can be used to get all bookmarks in the PDF document specified by id.
This PDF document must have been opened using pdf . OpenDocument ().

On return, pdf .GetBookmarks () will generate a table containing all bookmarks in the
document. For each entry, the table will have the following fields initialized:

Title: The bookmark’s title text.

Action: This field specifies what should happen if the respective bookmark is clicked.
This will be set to one of the following special constants:

#PDFACTION_GOTO:
Skip to page in current document.

#PDFACTION_REMOTEGOTO:
Skip to page in another document.

#PDFACTION_URI:
Open an URI

#PDFACTION_LAUNCH:
Launch a program.

#PDFACTION_UNSUPPORTED:
Unknown action.

26

Target:

Children:

INPUTS
id

RESULTS
t

Polybios manual

This will be set to the bookmark’s target. Depending on Action, this may
be set to a page number, a URI, or the path to an external file.

If the bookmark can be unfolded, this item will be set to another table
containing the same elements as its parent. Bookmarks can be infinitely
nested.

identifier of the PDF document to use

table containing all document bookmarks (see above)

6.9 pdf.GetBoundedText

NAME

pdf.GetBoundedText — get text within bounding rectangle (V1.1)

SYNOPSIS

t$ = pdf.GetBoundedText(id, page, left, top, right, bottom)

FUNCTION

This function can be used to extract the text that is within the bounding rectangle
specified by left, top, right, and bottom from a page. If there is no text within the
specified bounding rectangle, an empty string is returned.

The page to use must be specified in the page argument. It must be a number in the
range of 1 to the total number of pages in the document and the page must have been
previously loaded using pdf .LoadPage () with the text argument set to True. The PDF
document specified by id must have been previously opened using pdf . OpenDocument ().

INPUTS
id
page
left
top
right
bottom

RESULTS
t$

identifier of the PDF document to use
page number to use (starting from 1)
left boundary

top boundary

right boundary

bottom boundary

the text within the bounding rectangle

Chapter 6: General functions 27

6.10 pdf.GetBrush

NAME

pdf.GetBrush — get PDF page as vector brush
SYNOPSIS

[id, t] = pdf.GetBrush(id, page, brid[, transparent, getlinks])
FUNCTION

This function can be used to convert a page from the PDF document specified by id to
a vector brush using the identifier brid. If you pass Nil in brid, pdf.GetBrush() will
automatically choose a vacant identifier and return it.

The page to convert must be specified in the page argument. It must be a number in the
range of 1 to the total number of pages in the document. The PDF document specified
by id must have been opened using pdf . OpenDocument ().

The optional parameter transparent allows you to specify whether you’d like the page
background to be transparent or white. If you pass True here, you'll get a vector brush
in which the page background is completely transparent by using alpha channel trans-
parency. Otherwise the page background will be white and your vector brush won’t use
any transparency.

Note that the vector brush will still depend on the PDF document so it is not allowed
to call pdf.CloseDocument () on the document while you still need the brush.

Also note that you should only use this function for pages that haven’t been loaded
with pdf.LoadPage () before. If you want to convert a page that has been loaded using
pdf .LoadPage() to a brush, use the pdf.GetBrushFromPage() function instead. See
Section 6.11 [pdf.GetBrushFromPage], page 28, for details.

Starting with Polybios 1.1, there is an optional argument called getlinks. If this is set
to True, pdf .GetBrush() will return a table containing all links in the page. The table
is returned as the second return value if getlinks is set to True. For each entry, the
table will have the following fields initialized:

Action: This field specifies what should happen if the respective link is clicked. This
will be set to one of the following special constants:

#PDFACTION_GOTO:
Skip to page in current document.

#PDFACTION_REMOTEGOTO:
Skip to page in another document.

#PDFACTION_URI:
Open an URL

#PDFACTION_LAUNCH:
Launch a program.

#PDFACTION_UNSUPPORTED:
Unknown action.

Target: This will be set to the link’s target. Depending on Action, this may be set
to a page number, a URI, or the path to an external file.

28 Polybios manual
Left: Left edge of the link’s bounding rectangle.
Top: Top edge of the link’s bounding rectangle.
Right: Right edge of the link’s bounding rectangle.
Bottom: Bottom edge of the link’s bounding rectangle.
INPUTS
id identifier of the PDF document to use
page page number to convert (starting from 1)
brid identifier for the vector brush or Nil for auto id selection
transparent
optional: True for a transparent page background, False for a white page
background

getlinks optional: True if page links should be returned (see above) (defaults to
False) (V1.1)

RESULTS
id optional: identifier of the brush; will only be returned when you pass Nil as
argument 3 (see above)
t optional: table containing all page links (see above) (V1.1)

6.11 pdf.GetBrushFromPage
NAME

pdf.GetBrushFromPage — get PDF page as vector brush (V1.1)

SYNOPSIS

[id] = pdf.GetBrushFromPage(id, page, brid[, transparent])

FUNCTION

This function can be used to convert a page from the PDF document specified by id to
a vector brush using the identifier brid. If you pass Nil in brid, pdf.GetBrush() will
automatically choose a vacant identifier and return it.

The page to convert must be specified in the page argument. It must be a number in the
range of 1 to the total number of pages in the document and the page must have been
previously loaded using pdf . LoadPage (). The PDF document specified by id must have
been previously opened using pdf .OpenDocument ().

The optional parameter transparent allows you to specify whether you'd like the page
background to be transparent or white. If you pass True here, you’ll get a vector brush
in which the page background is completely transparent by using alpha channel trans-
parency. Otherwise the page background will be white and your vector brush won’t use
any transparency.

Note that the vector brush will still depend on the PDF document so it is not allowed
to call pdf.CloseDocument () on the document before freeing the brush. It also is not
allowed to call pdf .FreePage () before freeing the brush.

Chapter 6: General functions 29

If you want to convert a PDF page into a brush without being forced to load the
page using pdf.LoadPage() first, use the pdf.GetBrush() function. See Section 6.10
[pdf.GetBrush]|, page 27, for details.

INPUTS
id identifier of the PDF document to use
page page number to convert (starting from 1)
brid identifier for the vector brush or Nil for auto id selection
transparent
optional: True for a transparent page background, False for a white page
background
RESULTS
id optional: identifier of the brush; will only be returned when you pass Nil as

argument 3 (see above)

6.12 pdf.GetCharBox

NAME

pdf.GetCharBox — get bounding rectangle of character (V1.1)
SYNOPSIS

left, top, right, bottom = pdf.GetCharBox(id, page, idx)
FUNCTION

This function can be used to get the bounding box of the character at index idx on the
page specified by page. Note that character indices start at 0 whereas page indices start
at 1.

The page specified in the page argument must have been previously loaded using
pdf .LoadPage () with the text argument set to True. The PDF document specified by
id must have been previously opened using pdf .OpenDocument ().

INPUTS

id identifier of the PDF document to use

page page number to use (starting from 1)

idx index of character whose bounding rectangle to retrieve (starting from 0)
RESULTS

left left boundary

top top boundary

right right boundary

bottom bottom boundary

30

Polybios manual

6.13 pdf.GetCharIndexAtPos
NAME

pdf.GetCharIndexAtPos — get character at page position (V1.1)

SYNOPSIS

idx = pdf.GetCharIndexAtPos(id, page, x, y[, xt, ytl)

FUNCTION

This function can be used to get the index of a character at or nearby the position
specified by x and y on the page. The optional xt and yt parameters can be used to
specify a tolerance value (in point units) that should be used when getting the character.

The page to use must be specified in the page argument. It must be a number in the
range of 1 to the total number of pages in the document and the page must have been
previously loaded using pdf . LoadPage () with the text argument set to True. The PDF
document specified by id must have been previously opened using pdf . OpenDocument ().

pdf .GetCharIndexAtPos() will return the zero-based index of the character at, or
nearby the point specified by x and y. If there is no character at or nearby the point,
the return value will be -1. If an error occurs, -3 will be returned.

INPUTS
id identifier of the PDF document to use
page page number to use (starting from 1)
X x position to use
y y position to use
xt optional: x tolerance value (defaults to 0)
yt optional: y tolerance value (defaults to 0)
RESULTS
idx index of character at the specified point or -1 or -3 (see above)

6.

14 pdf.GetCharOrigin

NAME

pdf.GetCharOrigin — get origin of character (V1.1)

SYNOPSIS

X, y = pdf.GetCharOrigin(id, page, idx)

FUNCTION

This function can be used to get the origin of the character at the index specified by idx
(starting at 0).

The page to use must be specified in the page argument. It must be a number in the
range of 1 to the total number of pages in the document and the page must have been
previously loaded using pdf .LoadPage () with the text argument set to True. The PDF
document specified by id must have been previously opened using pdf . OpenDocument ().

Chapter 6: General functions 31

INPUTS
id identifier of the PDF document to use
page page number to use (starting from 1)
idx character index to use (starting from 0)
RESULTS
X X position of origin
y y position of origin

6.15 pdf.GetCropBox

NAME

pdf.GetCropBox — get crop box from page dictionary (V1.2)
SYNOPSIS

left, top, right, bottom = pdf.GetCropBox(id, page)
FUNCTION

This function can be used to get the "CropBox" entry from the page dictionary.
The page specified in the page argument must have been previously loaded using
pdf .LoadPage(). The PDF document specified by id must have been previously
opened using pdf . OpenDocument ().

INPUTS
id identifier of the PDF document to use
page page number to use (starting from 1)
RESULTS
left left boundary
top top boundary
right right boundary

bottom bottom boundary

6.16 pdf.GetFindResult

NAME

pdf.GetFindResult — get result of search operation (V1.1)
SYNOPSIS

idx, len = pdf.GetFindResult(id, page)
FUNCTION

This function can be used to get the result of a search operation after pdf .FindNext ()
or pdf .FindPrev() has returned True. In that case, pdf.GetFindResult () will return

32 Polybios manual

the character index of the search string’s occurrence on the page as well as its length.
Character indices start from 0.

The page to use must be specified in the page argument. It must be a number in the
range of 1 to the total number of pages in the document and the page must have been
previously loaded using pdf .LoadPage () with the text argument set to True. The PDF
document specified by id must have been previously opened using pdf . OpenDocument ().

INPUTS
id identifier of the PDF document to use
page page number to use (starting from 1)
RESULTS
idx start offset of next occurrence of search string on page
len length of search string

6.17 pdf.GetLastError

NAME

pdf.GetLastError — get last error code (V1.1)
SYNOPSIS

error = pdf.GetLastError()
FUNCTION

If pdf .OpenDocument () fails, pdf.GetLastError() can be used to get additional infor-
mation why the document couldn’t be opened. This is especially useful to find out if the
document couldn’t be opened because it is password-protected.

pdf .GetLastError () will return one of the following error codes:

#PDFERR_SUCCESS:
No error occurred.

#PDFERR_UNKNOWN :
An unknown error occurred.

#PDFERR_FILE:
The file couldn’t be found.

#PDFERR_FORMAT:
The file format couldn’t be recognized.

#PDFERR_PASSWORD:
The PDF document is password-protected.

#PDFERR_SECURITY:
Security settings forbid opening of this document.

#PDFERR_PAGE:
The page table is corrupted.

Chapter 6: General functions 33

Note that you have to call pdf .GetLastError () immediately after pdf . OpenDocument ()
to get the correct result code.

INPUTS

none

RESULTS

error last error code

6.18 pdf.GetMediaBox

NAME

pdf.GetMediaBox — get media box from page dictionary (V1.2)
SYNOPSIS

left, top, right, bottom = pdf.GetMediaBox(id, page)
FUNCTION

This function can be used to get the "MediaBox" entry from the page dictionary.
The page specified in the page argument must have been previously loaded using
pdf .LoadPage(). The PDF document specified by id must have been previously
opened using pdf . OpenDocument ().

INPUTS
id identifier of the PDF document to use
page page number to use (starting from 1)
RESULTS
left left boundary
top top boundary
right right boundary

bottom bottom boundary

6.19 pdf.GetMetaText

NAME

pdf.GetMetaText — get meta text from document (V1.1)
SYNOPSIS

t$ = pdf.GetMetaText(id, attr$)
FUNCTION

This function can be used to get meta text from the PDF document specified by id.
This PDF document must have been opened using pdf.OpenDocument(). The attr$
argument specifies which text to get. This must be a string and can be set to the
following values:

Title: Document’s title.

34 Polybios manual

Author: Document’s author.
Subject: Document’s subject.

Keywords:
Keywords.

Creator Document’s creator.

Producer:
Document’s producer.

CreationDate
Document’s creation date.

ModDate: Document’s last modification date.

Note that meta texts aren’t always set. If there is no meta text for the specified attribute,
an empty string is returned.

INPUTS

id identifier of the PDF document to use

attr$ string specifying the meta data to get (see above for possible values)
RESULTS

t$ meta data retrieved from document

6.20 pdf.GetObjectType

NAME

pdf.GetObjectType — get PDF document object type
SYNOPSIS

type = pdf.GetObjectType()
FUNCTION

This function returns the object type used by PDF documents loaded using the
pdf .OpenDocument () function. You can then use this object type with functions
from Hollywood’s object library such as GetAttribute(), SetObjectData(),
GetObjectData(), etc.

In particular, Hollywood’s GetAttribute () function may be used to query certain prop-
erties of PDF documents loaded using pdf .OpenDocument (). The following attributes
are currently supported by GetAttribute() for PDF documents:

#PDFATTRPAGES :
Returns the number of pages in the document.

#PDFATTRVERSION:
Returns the PDF version this document uses. This will be an integer number,
e.g. 14 for 1.4, 15 for 1.5, etc. (V1.1)

#PDFATTRPERMISSIONS:
Returns a 32-bit integer describing the document’s permission flags. Please
refer to the PDF Reference for detailed descriptions on permissions. (V1.1)

Chapter 6: General functions 35

INPUTS

none
RESULTS

type internal PDF document type for use with Hollywood’s object library
EXAMPLE

pdf . OpenDocument (1, "test.pdf")

PDF_DOCUMENT = pdf .GetObjectType ()
numpages = GetAttribute (PDF_DOCUMENT, 1, #PDFATTRPAGES)

The code above opens test.pdf and queries the number of pages in the document via
GetAttribute().

6.21 pdf.GetPageLabel

NAME

pdf.GetPageLabel — get page label text (V1.1)
SYNOPSIS

1$ = pdf.GetPagelabel(id, page)
FUNCTION

This function can be used to get the label of the page specified by the page argument.
This must be a number in the range of 1 to the total number of pages in the document and
the page must have been previously loaded using pdf .LoadPage (). The PDF document
specified by id must have been previously opened using pdf . OpenDocument ().

Note that page labels aren’t always set. If there is no label for the page, an empty string
is returned.

INPUTS
id identifier of the PDF document to use
page page number to use (starting from 1)
RESULTS
1$ page’s label

6.22 pdf.GetPageLen

NAME

pdf.GetPageLen — get number of characters on page (V1.1)
SYNOPSIS

len = pdf.GetPagelen(id, page)
FUNCTION

This function can be used to get the number of characters on the page specified by the
page argument. This must be a number in the range of 1 to the total number of pages
in the document and the page must have been previously loaded using pdf .LoadPage ()

36

Polybios manual

with the text argument set to True. The PDF document specified by id must have
been previously opened using pdf .OpenDocument ().

INPUTS
id
page

RESULTS

len

identifier of the PDF document to use

page number to use (starting from 1)

number of characters on page

6.23 pdf.GetPageLinks

NAME

pdf.GetPageLinks — get all links on a PDF page (V1.1)

SYNOPSIS

t = pdf.GetPageLinks(id, page)

FUNCTION

This function can be used to get all links from a PDF page. The page to use must be
specified in the page argument. It must be a number in the range of 1 to the total
number of pages in the document and it must have been loaded using pdf . LoadPage ().
The PDF document specified by id must have been opened using pdf . OpenDocument ().

On return, pdf.GetPageLinks() will generate a table containing all links in the page.
For each entry, the table will have the following fields initialized:

Action:

Target:

Left:
Top:
Right:

This field specifies what should happen if the respective link is clicked. This
will be set to one of the following special constants:

#PDFACTION_GOTO:
Skip to page in current document.

#PDFACTION_REMOTEGOTO:
Skip to page in another document.

#PDFACTION_URI:
Open an URL

#PDFACTION_LAUNCH:
Launch a program.

#PDFACTION_UNSUPPORTED:
Unknown action.

This will be set to the link’s target. Depending on Action, this may be set
to a page number, a URI, or the path to an external file.

Left edge of the link’s bounding rectangle.
Top edge of the link’s bounding rectangle.
Right edge of the link’s bounding rectangle.

Chapter 6: General functions 37

Bottom: Bottom edge of the link’s bounding rectangle.

INPUTS
id identifier of the PDF document to use
page page number to use (starting from 1)
RESULTS
t table containing all page links (see above)

6.24 pdf.GetRects

NAME

pdf.GetRects — get bounding rectangles of character range (V1.1)
SYNOPSIS

t = pdf.GetRects(id, page, idx, len)
FUNCTION

This function can be used to get a series of rectangles that encloses the text starting at
the index specified by idx, spanning over len number of characters. Note that character
indices start at 0. If you pass -1 in len, pdf.GetRects() will automatically extend the
selection to all remaining characters.

The page to use must be specified in the page argument. It must be a number in the
range of 1 to the total number of pages in the document and the page must have been
previously loaded using pdf .LoadPage () with the text argument set to True. The PDF
document specified by id must have been previously opened using pdf . OpenDocument ().

This function will return a table containing one subtable per bounding rectangle. Each
of those subtables will have the following fields initialized:

Left: Left boundary.
Top: Top boundary.
Right: Right boundary.

Bottom: Bottom boundary.

INPUTS

id identifier of the PDF document to use

page page number to use (starting from 1)

idx character index to use (starting from 0)

len number of characters to use or -1 for all remaining characters
RESULTS

t table containing a series of bounding rectangles (see above)

38 Polybios manual

6.25 pdf.GetText

NAME
pdf.GetText — get text on page (V1.1)

SYNOPSIS
t$ = pdf.GetText(id, page, idx, len)

FUNCTION
This function can be used to extract the text starting at the index specified by idx and
spanning over len number of characters from a page. Note that character indices start
at 0. If you pass -1 in len, pdf.GetText() will automatically extract all remaining
characters after the specified index.

The page to use must be specified in the page argument. It must be a number in the
range of 1 to the total number of pages in the document and the page must have been
previously loaded using pdf .LoadPage () with the text argument set to True. The PDF
document specified by id must have been previously opened using pdf . OpenDocument ().

INPUTS

id identifier of the PDF document to use

page page number to use (starting from 1)

idx character index to use (starting from 0)

len number of characters to use or -1 for all remaining characters
RESULTS

t$ text that has been extracted

6.26 pdf.GetVersion

NAME
pdf.GetVersion — get libHaru version

SYNOPSIS
ver$ = pdf.GetVersion()

FUNCTION
This function can be used to query the version of libHaru used by Polybios. It will return
a version string.

INPUTS

none

RESULTS

ver$ libHaru version string

Chapter 6: General functions 39

6.27 pdf.IsPDF

NAME
pdf.IsPDF — check if file is a valid PDF document (V1.1)

SYNOPSIS
ok = pdf.IsPDF(f$)

FUNCTION
This function checks if the file specified by £$ is in the PDF format and returns True if
it is, False otherwise.

INPUTS
£$ file to check
RESULTS
ok True if the specified file is a PDF document

6.28 pdf.LoadPage

NAME
pdf.LoadPage — load page from PDF document (V1.1)

SYNOPSIS
pdf .LoadPage (id, pagel, loadtext])

FUNCTION
This function can be used to load a page from the PDF document specified by id. The
page to load must be specified in the page argument. It must be a number in the range
of 1 to the total number of pages in the document. The PDF document specified by id
must have been opened using pdf .OpenDocument () before.

If the optional argument loadtext is set to True, pdf.LoadPage() will also load the
page’s text. This is necessary if you want to use functions that deal with text on a PDF
page, e.g. pdf.GetText () or pdf.FindStart().

When you’re done with the page, you should call pdf .FreePage() to free its resources.
This is also done automatically when calling pdf.CloseDocument (). See Section 6.7
[pdf:FreePage|, page 25, for details.

INPUTS
id identifier of the PDF document to use
page page number to load (starting from 1)

loadtext optional: True if the page’s text should be loaded (defaults to False)

40 Polybios manual

6.29 pdf.OpenDocument

NAME

pdf.OpenDocument — open PDF document
SYNOPSIS

[id] = pdf.OpenDocument(id, file$[, t])
FUNCTION

This function opens an existing PDF document which is specified by file$ and assigns
the identifier id to it. If you pass Nil in id, pdf.OpenDocument () will automatically
choose a vacant identifier and return it.

The optional table argument allows you to configure further options:

Password:
If the document is password-protected, you can specify the password needed
to open this document here.

Adapter: This tag allows you to specify one or more file adapters that should be asked
to open the specified file. This must be set to a string containing the name(s)
of one or more adapter(s). Defaults to default. See your Hollywood manual
for more information on file adapters.

If pdf.OpenDocument () fails, pdf.GetLastError() can be used to get additional in-
formation why the document couldn’t be opened. This is especially useful to find out
if the document couldn’t be opened because it is password-protected. See Section 6.17
[pdf.GetLastError|, page 32, for details.

INPUTS
id identifier for the PDF document or Nil for auto id selection
file$ file to load
table optional: table specifying further options (see above)
RESULTS
id optional: identifier of the document; will only be returned when you pass

Nil as argument 1 (see above)

6.30 pdf.PageToDevice

NAME
pdf.PageToDevice — convert page coordinates to screen coordinates (V1.2)

SYNOPSIS

X, y = pdf.PageToDevice(id, page, startx, starty, sizex, sizey, rotate,
pagex, pagey)
FUNCTION

This function can be used to convert the page coordinates of the point specified by pagex
and pagey to screen coordinates.

41

The rotate argument can be used to specify the page orientation. This can be set to
the following special values:

0: Normal.

1: Rotated 90 degrees clockwise.

2: Rotated 180 degrees.

3: Rotated 90 degrees counter-clockwise.

The page to use must be specified in the page argument. It must be a number in the
range of 1 to the total number of pages in the document and the page must have been
previously loaded using pdf . LoadPage (). The PDF document specified by id must have
been previously opened using pdf .0penDocument ().

The page coordinate system has its origin at the left-bottom corner of the page, with
the X-axis on the bottom going to the right, and the Y-axis on the left side going up.
Note that this coordinate system can be altered when you zoom, scroll, or rotate a page,
however, a point on the page should always have the same coordinate values in the page
coordinate system.

The device coordinate system is device dependent. For screen devices, its origin is at the
left-top corner of the window.

INPUTS
id identifier of the PDF document to use
page page number to use (starting from 1)
startx left pixel position of the display area in device coordinates
starty top pixel position of the display area in device coordinates
sizex horizontal size (in pixels) for displaying the page
sizey vertical size (in pixels) for displaying the page
rotate page orientation (see above for possible values)
pagex x value in page coordinates
pagey y value in page coordinates
RESULTS
X x value in device coordinates

y y value in device coordinates

43

7 Annotation methods

7.1 annot:SetBorderStyle

NAME

annot:SetBorderStyle — set appearance of text annotation

SYNOPSIS
status = annot:SetBorderStyle(subtype, width, dashon, dashoff, dashphase)

FUNCTION
annot:SetBorderStyle() defines the appearance of a text annotation. subtype must
be one of the following constants:

#HPDF_BS_SOLID:
Solid rectangle

#HPDF_BS_DASHED:
Dashed rectangle

#HPDF_BS_BEVELED:
Embossed rectangle

#HPDF_BS_INSET:
Engraved rectangle

#HPDF_BS_UNDERLINED:
Single line under the bottom of the annotation

Returns #HPDF_OK on success. Otherwise, returns an error code and the error handler is
invoked.

INPUTS

subtype one of the constants listed above
width the width of an annotation’s border
dashon the dash style

dashoff the dash style

dashphase
the dash style

RESULTS

status status code

44 Polybios manual

7.2 annot:SetCMY KColor

NAME

annot:SetCMYKColor — set CMYK color
SYNOPSIS

status = annot:SetCMYKColor (cmyk)
FUNCTION

This method is currently undocumented in libHaru. Complain to the libHaru authors.

The cmyk parameter must be a table with the following fields initialized:

C Cyan level of color.

Y Yellow level of color.

M Magenta level of color.
K Black level of color.

All values must be between 0 and 1.

Returns #HPDF_OK on success. Otherwise, returns an error code and the error handler is
invoked.

INPUTS

cmyk CMYK color
RESULTS

status status code

7.3 annot:SetFreeText Annot2PointCalloutLine

NAME
annot:SetFreeText Annot2PointCalloutLine — set free text annotation two point callout
line
SYNOPSIS
status = annot:SetFreeTextAnnot2PointCalloutLine(startpoint, endpoint)
FUNCTION
This method is currently undocumented in libHaru. Complain to the libHaru authors.

The parameters startpoint and endpoint must be tables that describe a point each.
Thus, each of those tables must contain the fields x and y.

Returns #HPDF_0OK on success. Otherwise, returns an error code and the error handler is
invoked.

INPUTS

startpoint
start point

endpoint end point

Chapter 7: Annotation methods 45

RESULTS
status status code

7.4 annot:SetFreeText Annot3PointCalloutLine

NAME
annot:SetFreeText Annot3PointCalloutLine — set free text annotation three point callout
line

SYNOPSIS
status = annot:SetFreeTextAnnot3PointCalloutLine(startpoint, kneepoint,
endpoint)
FUNCTION

This method is currently undocumented in libHaru. Complain to the libHaru authors.

The parameters startpoint, kneepoint, and endpoint must be tables that describe a
point each. Thus, each of those tables must contain the fields x and y.

Returns #HPDF_OK on success. Otherwise, returns an error code and the error handler is
invoked.

INPUTS

startpoint
start point

kneepoint
knee point

endpoint end point

RESULTS
status status code

7.5 annot:SetFreeText AnnotDefaultStyle

NAME

annot:SetFreeText AnnotDefaultStyle — set free text annotation default style
SYNOPSIS

status = annot:SetFreeTextAnnotDefaultStyle(style)
FUNCTION

This method is currently undocumented in libHaru. Complain to the libHaru authors.
Returns #HPDF_0OK on success. Otherwise, returns an error code and the error handler is
invoked.

INPUTS
style default style

RESULTS

status status code

46 Polybios manual

7.6 annot:SetFreeText AnnotLineEndingStyle
NAME

annot:SetFreeText AnnotLineEndingStyle — set free text annotation line ending style

SYNOPSIS
status = annot:SetFreeTextAnnotLineEndingStyle(startstyle, endstyle)

FUNCTION
This method is currently undocumented in libHaru. Complain to the libHaru authors.

The parameters startstyle and endstyle must be one of the following constants:

#HPDF_LINE_ANNOT_NONE
#HPDF_LINE_ANNOT_SQUARE
#HPDF_LINE_ANNOT_CIRCLE
#HPDF_LINE_ANNOT_DIAMOND
#HPDF_LINE_ANNOT_OPENARROW
#HPDF_LINE_ANNOT_CLOSEDARROW
#HPDF_LINE_ANNOT_BUTT
#HPDF_LINE_ANNOT_ROPENARROW
#HPDF_LINE_ANNOT_RCLOSEDARROW
#HPDF_LINE_ANNOT_SLASH

Returns #HPDF_0OK on success. Otherw