
RebelSDL 1.0
"I’m Just a Rebel"

Andreas Falkenhahn

i

Table of Contents

1 General information . 1
1.1 Introduction . 1
1.2 Terms and conditions . 2
1.3 Requirements . 3
1.4 Installation . 3

2 About RebelSDL . 5
2.1 Credits . 5
2.2 Frequently asked questions . 5
2.3 Known issues . 6
2.4 Future . 6
2.5 History . 6

3 Usage . 7
3.1 Activating RebelSDL . 7
3.2 Using a hardware double buffer . 8
3.3 Drawing graphics . 9
3.4 Using hardware brushes . 10
3.5 Offscreen rendering . 11
3.6 Using the SDL renderer . 11
3.7 Joysticks and game controllers . 12
3.8 Increasing execution speed . 12
3.9 RebelSDL as a helper plugin . 12
3.10 Raspberry Pi peculiarities . 13

4 Examples . 15
4.1 Examples . 15

5 Joystick reference . 17
5.1 sdl.ForceJoystickMode . 17
5.2 sdl.GetAxis . 17
5.3 sdl.GetBall . 18
5.4 sdl.GetButton . 18
5.5 sdl.GetHat . 19
5.6 sdl.GetJoysticks . 20
5.7 sdl.GetNumAxes . 20
5.8 sdl.GetNumBalls . 20
5.9 sdl.GetNumButtons . 21
5.10 sdl.GetNumHats . 21
5.11 sdl.IsGameController . 21

ii RebelSDL manual

6 Keyboard reference . 23
6.1 sdl.SetTextInputRect . 23
6.2 sdl.StartTextInput . 23
6.3 sdl.StopTextInput . 23

7 Renderer reference . 25
7.1 sdl.EnableOffscreenRender . 25
7.2 sdl.GetCurrentRenderDriver . 25
7.3 sdl.GetRenderDrawBlendMode . 26
7.4 sdl.GetRenderDrawColor . 26
7.5 sdl.GetRendererOutputSize . 27
7.6 sdl.GetTextureAlphaMod . 27
7.7 sdl.GetTextureBlendMode . 27
7.8 sdl.GetTextureColorMod . 28
7.9 sdl.RenderClear . 28
7.10 sdl.RenderCopy . 29
7.11 sdl.RenderDrawLine . 30
7.12 sdl.RenderDrawPoint . 30
7.13 sdl.RenderDrawRect . 31
7.14 sdl.RenderFillRect . 31
7.15 sdl.RenderGetClipRect . 32
7.16 sdl.RenderGetLogicalSize . 32
7.17 sdl.RenderGetScale . 33
7.18 sdl.RenderGetViewport . 33
7.19 sdl.RenderPresent . 33
7.20 sdl.RenderSetClipRect . 34
7.21 sdl.RenderSetLogicalSize . 34
7.22 sdl.RenderSetScale . 35
7.23 sdl.RenderSetViewport . 35
7.24 sdl.SetRenderDrawBlendMode . 36
7.25 sdl.SetRenderDrawColor . 36
7.26 sdl.SetRenderTarget . 37
7.27 sdl.SetTextureAlphaMod . 37
7.28 sdl.SetTextureBlendMode . 38
7.29 sdl.SetTextureColorMod . 39

8 System reference . 41
8.1 sdl.ClearError . 41
8.2 sdl.GetCurrentVideoDriver . 41
8.3 sdl.GetError . 41
8.4 sdl.GetVersion . 42

9 Window reference . 43
9.1 sdl.SetWindowFullscreen . 43

iii

Appendix A Licenses . 45
A.1 SDL license . 45

Index . 47

1

1 General information

1.1 Introduction

RebelSDL is a plugin for Hollywood that allows you to use SDL (Simple DirectMedia
Layer) from Hollywood. This makes it possible to write scripts that utilize the host sys-
tem’s graphics hardware to create high-performance, butter-smooth 2D animation that is
produced completely in hardware by the GPU of your graphics board. This leads to a huge
performance boost over the classic Hollywood graphics API which is mostly implemented in
software for maximum portability and compatibility. Especially systems with slower CPUs
(like the Raspberry Pi) will benefit greatly from hardware-accelerated drawing, scaling, and
transformation offered by SDL.

SDL is a cross-platform development library designed to provide low level access to audio,
keyboard, mouse, joystick, and graphics hardware via OpenGL and Direct3D. It is used by
video playback software, emulators, and popular games. More information about SDL can
be obtained from http://www.libsdl.org. You can find good tutorials about learning
SDL all over the web.

RebelSDL transparently replaces Hollywood’s inbuilt display handler with its own display
handler managed by SDL. Whenever RebelSDL is activated, Hollywood displays are au-
tomatically mapped to SDL windows and hardware brushes are mapped directly to SDL
textures so that they can be drawn, scaled, and transformed in an extremely quick way on
all supported systems. This is especially useful on Windows, Mac OS X, and Linux because
Hollywood doesn’t support hardware double buffers and hardware brushes on these plat-
forms by default. With RebelSDL, however, hardware double buffers and hardware brushes
can be used on these platforms now too. So RebelSDL can also act as a helper plugin here
which adds this functionality to Hollywood without having you write a single line of SDL
code to utilize it!

On top of that, RebelSDL offers wrapper functions for some useful commands of the SDL
API, for example RebelSDL allows you to call SDL’s joystick and game controller func-
tions which are much more flexible than Hollywood’s inbuilt joystick library. RebelSDL
also allows you to access Hollywood hardware brushes as SDL textures and modify their
properties via some dedicated SDL calls exposed by RebelSDL.

Finally, RebelSDL also replaces Hollywood’s inbuilt audio driver with the audio driver
offered by SDL. In contrast to the graphics driver SDL’s audio driver probably doesn’t have
any advantage over Hollywood’s inbuilt audio driver but by using it RebelSDL will make
your program into a complete SDL application which doesn’t only use SDL for graphics
output but also for audio output.

RebelSDL utilizes the new display adapter plugin interface introduced with Hollywood
6.0. Thus, the plugin will not work with any older versions of Hollywood. It requires
at least Hollywood 6.0. Whenever RebelSDL is activated, all graphics and audio output
will automatically be routed through SDL. To benefit from hardware-accelered drawing,
however, Hollywood scripts have to follow some rules as described in this manual.

RebelSDL comes with extensive documentation in various formats like PDF, HTML, Ami-
gaGuide, and CHM that contains information about how to use this plugin. On top of

http://www.libsdl.org

2 RebelSDL manual

that, many example scripts are included in the distribution archive to get you started really
quickly.

All of this makes RebelSDL the ultimate scripting experience for all you SDL rebels by
combining the best of both worlds into one powerful plugin: Hollywood’s extensive and
convenient multimedia function set and SDL’s raw graphics power!

1.2 Terms and conditions

RebelSDL is c© Copyright 2014-2017 by Andreas Falkenhahn (in the following referred to
as "the author"). All rights reserved.

The program is provided "as-is" and the author cannot be made responsible of any possible
harm done by it. You are using this program absolutely at your own risk. No warranties
are implied or given by the author.

This plugin may be freely distributed as long as the following three conditions are met:

1. No modifications must be made to the plugin.

2. It is not allowed to sell this plugin.

3. If you want to put this plugin on a coverdisc, you need to ask for permission first.

This software uses Simple DirectMedia Layer (SDL) Copyright (C) 1997-2016 Sam Lantinga.
See Section A.1 [SDL license], page 45, for details.

This documentation is based in part on the SDL documentation by various authors which
is available here: http://wiki.libsdl.org/FrontPage

Amiga is a registered trademark of Amiga, Inc.

All other trademarks belong to their respective owners.

DISCLAIMER: THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDER AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BE-
ING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PAR-
TIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

http://wiki.libsdl.org/FrontPage

Chapter 1: General information 3

1.3 Requirements

− Hollywood 6.0 or better

− Windows: requires at least Windows 2000

− Mac OS X: requires at least 10.5 on PowerPC or 10.6 on Intel Macs

− Raspberry Pi: requires at least a Raspberry Pi 2 and Raspbian Jessie

− MorphOS: requires at least MorphOS 3.8

1.4 Installation

Installing RebelSDL is straightforward and simple: Just copy the file rebelsdl.hwp

for the platform to Hollywood’s plugins directory. On all systems except on AmigaOS
and compatibles, plugins must be stored in a directory named Plugins that is in
the same directory as the main Hollywood program. On AmigaOS and compatible
systems, plugins must be installed to LIBS:Hollywood instead. On Mac OS X, the
Plugins directory must be inside the Resources directory of the application bundle,
i.e. inside the HollywoodInterpreter.app/Contents/Resources directory. Note that
HollywoodInterpreter.app is stored inside the Hollywood.app application bundle itself,
namely in Hollywood.app/Contents/Resources.

Afterwards merge the contents of the Examples folder with the Examples folder that is part
of your Hollywood installation. All RebelSDL examples will then appear in Hollywood’s
GUI and you can launch and view them conveniently from the Hollywood GUI or IDE.

On Windows you should also copy the file RebelSDL.chm to the Docs directory of your
Hollywood installation. Then you will be able to get online help by pressing F1 when the
cursor is over a RebelSDL function in the Hollywood IDE.

On Linux and Mac OS copy the RebelSDL directory that is inside the Docs directory of the
RebelSDL distribution archive to the Docs directory of your Hollywood installation. Note
that on Mac OS the Docs directory is within the Hollywood.app application bundle, i.e. in
Hollywood.app/Contents/Resources/Docs.

5

2 About RebelSDL

2.1 Credits

RebelSDL was written by Andreas Falkenhahn. Work on this project was started in Summer
2014 as a proof-of-concept demonstration of Hollywood 6.0’s powerful new display adapter
and audio adapter API which allows plugins to take over Hollywood’s entire display and
audio handler and replace it with a custom driver. Writing RebelSDL also helped to concep-
tualize Hollywood’s plugin interfaces to make them as flexible as possible for new backends.
That is why RebelSDL is also a test case for most of the features offered by the Hollywood
SDK. RebelSDL has many features that can be optionally enabled to test certain function-
alities of the Hollywood SDK. See Section 3.1 [Activating RebelSDL], page 7, for details.
Later RebelSDL was expanded to allow access to other SDL functionality like joystick and
game controller support. Finally, some wrapper functions were added to allow scripts to
access Hollywood hardware brushes as SDL textures.

If you need to contact me, you can either send an e-mail to andreas@airsoftsoftwair.de

or use the contact form on http://www.hollywood-mal.com.

2.2 Frequently asked questions

This section covers some frequently asked questions. Please read them first before asking
on the mailing list or forum because your problem might have been covered here.

Q: Why is RebelSDL so slow on my Raspberry Pi?

A: First make sure that you’re using a 2017 or better version of Raspbian Jessie or Stretch.
Then make sure to enable the experimental vc4 KMS/DRM OpenGL driver for X11 in
raspi-config. See Section 3.10 [Raspberry Pi peculiarities], page 13, for details. Note that
if you’re still on a Raspberry Pi 1 there is nothing you can do to get hardware acceleration
from RebelSDL. The Raspberry Pi 1 is currently unsupported by RebelSDL. You need at
least a Raspberry Pi 2.

Q: By default, RebelSDL uses Direct3D on Windows. How can I force it to use OpenGL
instead?

A: Just set the RenderDriver tag to opengl when @REQUIRE’ing RebelSDL. See Section 3.1
[Activating RebelSDL], page 7, for details.

Q: Why doesn’t RebelSDL report non-ASCII keys through OnKeyDown and OnKeyUp?

A: That’s a limitation of SDL. It only supports ASCII and control keys through the
OnKeyDown and OnKeyUp event handlers. If you have Hollywood 7.0 or better, you can just
listen to the VanillaKey event handler to get the real keyboard events with full Unicode
support.

Q: Is there a Hollywood forum where I can get in touch with other users?

A: Yes, please check out the "Community" section of the official Hollywood Portal online
at http://www.hollywood-mal.com.

andreas@airsoftsoftwair.de
http://www.hollywood-mal.com
http://www.hollywood-mal.com

6 RebelSDL manual

Q: How do I quit scripts that run in fullscreen mode?

A: Just press CTRL+C. This will always work except when CTRL+C has been explicitly
disabled using Hollywood’s CtrlCQuit() function.

Q: Where can I ask for help?

A: There’s a lively forum at http://forums.hollywood-mal.com and we also have a mailing
list which you can access at airsoft_hollywood@yahoogroups.com. Visit http://www.

hollywood-mal.com for information on how to join the mailing list.

Q: I have found a bug.

A: Please post about it in the dedicated sections of the forum or the mailing list.

2.3 Known issues

Here is a list of things that RebelSDL doesn’t support yet or that may be confusing in some
way:

− the MorphOS version is very unstable, e.g. fullscreen mode crashes, iconifying a win-
dow crashes, the mouse pointer is always hidden, etc.; this isn’t RebelSDL’s fault but
MorphOS’ SDL2 port which seems to be in alpha state; I’ve tried to get in touch with
SDL2’s MorphOS maintainer but didn’t get any reply so you’ll have to live with these
issues for the time being

− menus are unsupported

− the mouse wheel is unsupported

− the keyboard listener that is mapped to Hollywood’s OnKeyDown and OnKeyUp event
handlers currently only supports ASCII and control keys; this is because of a limitation
in SDL which doesn’t support fine-tuned listening (i.e. key down, key repeat, key up)
using international keyboards; people who are on Hollywood 7.0 or better can just use
the VanillaKey event handler instead; this event handler will deliver real keyboard
events including full Unicode support

− not all display styles are supported

2.4 Future

Here are some things that are on my to do list:

− add support for more SDL calls

Don’t hesitate to contact me if RebelSDL lacks a certain feature that is important for your
project.

2.5 History

Please see the file history.txt for a complete change log of RebelSDL.

http://forums.hollywood-mal.com
airsoft_hollywood@yahoogroups.com
http://www.hollywood-mal.com
http://www.hollywood-mal.com

7

3 Usage

3.1 Activating RebelSDL

All you have to do to make your script use SDL instead of Hollywood’s inbuilt graphics
driver is adding the following line to the top of your script:

@REQUIRE "rebelsdl"

Alternatively, if you are using Hollywood from a console, you can also start your script like
this:

Hollywood test.hws -requireplugins rebelsdl

Once the RebelSDL plugin has been activated for your script, it will reroute all of Holly-
wood’s graphics output through SDL. Note that this will usually be slower than Hollywood’s
inbuilt graphics driver for scripts that aren’t optimized for RebelSDL. To get an optimal
performance with SDL, your script needs to use a hardware-accelerated double buffer. See
Section 3.2 [Using a hardware double buffer], page 8, for details.

RebelSDL accepts the following arguments in its @REQUIRE call:

EnableVSync:

By default, RebelSDL’s hardware double buffer is sync’ed with the monitor’s
vertical refresh. This means that Flip() will always block until the next vertical
refresh and then flip the buffers. This will generate perfectly smooth graphics
but of course it also means that you can’t draw faster than the monitor’s ver-
tical refresh, typically around 60 times per second. If you want to ignore the
monitor’s vertical refresh, set this tag to False and RebelSDL won’t throttle
double buffer flipping. It will then flip buffers as fast as the hardware allows.
Defaults to True.

ForceFullRefresh:

If this tag is set to False, RebelSDL will only refresh the parts of the display
that have actually changed. This is quicker but it can lead to some refresh
problems depending on the way your script draws its graphics. That is why
this tag defaults to True, which means that RebelSDL will always refresh the
full display whenever something is drawn. This is slower but guarantees that
there will be visual artefacts because front and back buffers will always be
completely in sync.

RenderDriver:

This tag allows you to select a different render driver than the default one.
This is mostly useful for testing purposes. For example, it is possible to force
RebelSDL to use OpenGL on Windows instead of the default Direct3D driver
with this tag. Possible values for this tag are direct3d, opengl, opengles,
opengles2, rpi, and software. See Section 3.10 [Raspberry Pi peculiarities],
page 13, for more information on the rpi driver.

UseAudioAdapter:

By default, RebelSDL will replace Hollywood’s inbuilt audio driver with a cus-
tom audio driver that uses SDL to play audio. If you don’t want that, set this

8 RebelSDL manual

tag to False. Then Hollywood’s inbuilt audio driver will be used even when
RebelSDL is active. Normally, however, it’s not necessary to set this tag unless
you experience problems with RebelSDL’s audio driver. Defaults to True.

UseBitmapAdapter:

If this is set to True, RebelSDL will override Hollywood’s inbuilt handler for
software bitmaps. This doesn’t have any practical advantages and was only
implemented to test the corresponding Hollywood SDK functionality. Defaults
to False.

UseDesktopFullScreen:

SDL offers a special display mode that automatically scales windows opened by
SDL to the dimensions of the desktop. The window will then occupy all screen
space without changing the monitor’s resolution. You can activate this mode
by setting this tag to True. Setting this tag to True will also automatically
activate autoscaling for your display. Note that a similar effect can be achieved
by using Hollywood’s FullScreenScale display mode but it’s preferrable to use
UseDesktopFullScreen because it is directly tied to SDL. Defaults to False.

UseDoubleBufferAdapter:

If this is set to False, RebelSDL won’t support hardware double buffers. Since
hardware double buffers are one of the most important features of RebelSDL,
there’s probably no case where you’d want to disable this feature. It’s mostly
here for debugging purposes. Defaults to True.

UseSoftwareRenderer:

By default, SDL will try to use the GPU to draw graphics whenever and wher-
ever possible. If you don’t want this, you can set this tag to True to put SDL
into pure software drawing mode. This is probably only of use for testing and
debugging purposes because normally you’d want to use the hardware renderer
for the best performance. Defaults to False.

UseVideoBitmapAdapter:

If this is set to False, RebelSDL won’t support hardware brushes. Since hard-
ware brushes are one of the most important features of RebelSDL, there’s prob-
ably no case where you’d want to disable this feature. It’s mostly here for
debugging purposes. Defaults to True.

Here is an example of how to pass arguments to the @REQUIRE preprocessor command:

@REQUIRE "rebelsdl", {UseDesktopFullScreen = True}

Alternatively, you can also use the -requiretags console argument to pass these arguments.
See the Hollywood manual for more information.

3.2 Using a hardware double buffer

If you want your script to benefit from RebelSDL’s hardware-accelerated drawing functions,
you need to use a hardware double buffer and do all your drawing within that double buffer.
Using a hardware double buffer will also ensure that graphics output is synchronized with
your monitor’s refresh rate to prevent any flickering. To get an optimal performance with
RebelSDL, your main loop should always look like this:

@REQUIRE "rebelsdl"

Chapter 3: Usage 9

BeginDoubleBuffer(True) ; set up a hardware double buffer

Repeat

.... ; draw the next frame here

Flip() ; wait for vertical refresh, then flip buffers

CheckEvent() ; run event callbacks

Forever

The call to CheckEvent() is only necessary if your script needs to listen to event handlers
that have been installed using InstallEventHandler(). Note that you should not draw the
next frame in an interval callback that runs at a constant frame rate (say 50fps) because
such a setup won’t guarantee that drawing is synchronized with the vertical refresh as
different monitors use different refresh rates so you might get flickery graphics. If you do
your drawing like above, you can be sure that front and back buffers will be flipped in
perfect synchronization with the monitor’s vertical refresh.

Additionally, you need to take care of how you actually draw your graphics because most of
Hollywood’s drawing commands operate entirely in software mode and thus do not benefit
from hardware acceleration. See Section 3.3 [Drawing graphics], page 9, for details.

When drawing brushes in a hardware double buffer, make sure that you use only hardware
brushes because only those can be drawn directly using hardware acceleration. Drawing
normal brushes to hardware double buffers is possible too, but it will be very slow. See
Section 3.4 [Hardware brushes], page 10, for details.

Important: SDL is designed to be used with double buffers. Thus, you can only benefit
from hardware acceleration when drawing within a double buffer. Drawing outside a double
buffer is possible but it will be much slower.

3.3 Drawing graphics

For an optimal performance you need to be very careful concerning the way you draw your
graphics. Most of Hollywood’s drawing commands are implemented in software only, i.e.
they draw using the CPU instead of the GPU. This can become quite a bottleneck especially
on slower CPUs. Thus, you should know which drawing functions are hardware-accelerated
and which aren’t and then write your scripts accordingly.

The following Hollywood commands are hardware-accelerated when RebelSDL is active and
they are used within a hardware double buffer:

Box()

Cls()

Line()

Plot()

DisplayBrush()

DisplayBrush() will only use hardware acceleration when called with a hardware brush.
See Section 3.4 [Using hardware brushes], page 10, for details. When used with a software
brush, i.e. a brush that doesn’t reside in video memory, DisplayBrush() will draw the
brush using the CPU which is much slower.

Box(), Line(), and WritePixel() will only use hardware acceleration in case the fill style
is either #FILLNONE or #FILLCOLOR and no other form styles like #EDGE or #SHADOW are

10 RebelSDL manual

active. As soon as you want to draw with other fill or form styles, these commands will fall
back to their software counterparts and thus will be very slow. You can work around this
problem by simply drawing the graphics into a hardware brush first and then just drawing
this hardware brush. This is a good strategy because then Hollywood’s software renderer
will be used only once, i.e. when drawing the graphics into a hardware brush, and after
that you’ll profit from hardware acceleration all the time because hardware brushes can be
drawn really quickly.

Finally, don’t forget that you should do all your drawing inside a hardware double buffer
loop. See Section 3.2 [Using a hardware double buffer], page 8, for details.

3.4 Using hardware brushes

RebelSDL supports the creation of hardware brushes. Hardware brushes reside in GPU
memory and thus can be drawn in no time. On most graphics boards, they can also be
scaled and transformed by the GPU in an extremely efficient way. To make Hollywood
create a hardware brush, all you have to do is set the optional Hardware tag to True. This
tag is supported by most of the Hollywood commands which create brushes.

Here is an example:

@REQUIRE "rebelsdl" ; make sure this line is first

@BRUSH 1, "sprites.png", {Hardware = True}

In the code above, RebelSDL will create brush 1 in video memory. It can then be drawn
using the GPU at almost no cost. Keep in mind, though, that hardware brushes can only
be drawn to hardware double buffers. See Section 3.2 [Using a hardware double buffer],
page 8, for details.

To transform a hardware brush, you can use the ScaleBrush(), RotateBrush(), and
TransformBrush() commands. Transformations of hardware brushes are usually also GPU-
accelerated and thus many times faster than transformations done by the CPU.

Note that hardware brushes can only be drawn to the display that was specified when
allocating them. Thus, if your script uses multiple displays, you need to tell Hollywood the
identifier of the display you want to use this hardware brush with. This can be done by
specifying the "Display" tag along the "Hardware" tag. Here is an example:

@REQUIRE "rebelsdl" ; make sure this line is first

@DISPLAY 1, {Title = "First display"}

@DISPLAY 2, {Title = "Second display"}

@BRUSH 1, "sprites.png", {Hardware = True, Display = 1}

@BRUSH 2, "sprites.png", {Hardware = True, Display = 2}

The code above will allocate brush 1 in a way that it can be drawn to display 1 and it will
allocate brush 2 in a way that it can be drawn to display 2. It won’t be possible, however, to
draw brush 2 to display 1 or brush 1 to display 2! RebelSDL hardware brushes are always
display-dependent and can only be drawn to the display they were allocated for.

Please see the Hollywood manual for more information on hardware brushes and hardware
double buffers.

You can also use RebelSDL as a helper plugin to add hardware brush support to Hollywood
on Windows, Mac OS X, and Linux. By default, Hollywood doesn’t support hardware

Chapter 3: Usage 11

brushes on these systems but RebelSDL can add this feature to Hollywood. See Section 3.9
[RebelSDL as a helper plugin], page 12, for details.

The SmoothScroll.hws example script that comes with RebelSDL demonstrates how to
use hardware brushes and a hardware double buffer to achieve butter-smooth scrolling that
is fully synchronized with the monitor’s vertical refresh.

3.5 Offscreen rendering

If you pass True to the sdl.EnableOffscreenRender() command, all hardware brushes
that are created after the call to sdl.EnableOffscreenRender() can be drawn to using
Hollywood’s SelectBrush() command. These drawing operations can also be hardware-
accelerated which gives them an advantage over Hollywood’s default offscreen drawing rou-
tines which can only draw to software brushes.

There is, however, a major limitation that you have to keep in mind: Hardware brushes
which can be drawn to using SelectBrush() will lose their contents on Windows whenever
the window size is changed or when the window’s display mode changes, e.g. from full
screen mode to window or the other way round. Thus, using hardware brushes which can
be drawn to really only makes sense if you update them every frame or if you are able to re-
initialize them whenever the window’s size or display mode changes. If your script isn’t able
to handle that, you will be in trouble. Because of this limitation, it is also highly advised to
call sdl.EnableOffscreenRender() with its argument set to False immediately after you
have created the hardware brushes that you want to use for offscreen drawing. Otherwise,
all hardware brushes created subsequently will also be prepared for offscreen drawing and
will thus suffer from the limitations described above.

Note that in order to utilize hardware acceleration on offscreen drawing you need to follow
the same rules as when drawing to a hardware double buffer. Only a few graphics operations
are hardware-accelerated. See Section 3.3 [Drawing graphics], page 9, for details.

It is also important to note that the different combo modes supported by SelectBrush()

won’t work with RebelSDL. Instead, graphics are always drawn to the color and the alpha
channel of the hardware brush, no matter which mode you specify. Also, you cannot use
SelectMask() or SelectAlphaChannel() with hardware brushes. It’s only possible to use
SelectBrush() to draw into color and alpha channels at the same time.

3.6 Using the SDL renderer

For advanced users RebelSDL allows you to call SDL renderer functions directly for the
ultimate flexibility. Take note, though, that if you do this then you’ll be operating at a very
low level and some Hollywood features like the autoscaling engine won’t work any more
because all your drawing calls are routed directly through SDL without Hollywood having
a chance to intervene. This has very little overhead but comes at the expense of certain
Hollywood features not working any longer, like the autoscaling engine.

If you do make SDL renderer calls directly, you should also not mix them with Hollywood
drawing calls. You should either draw entirely with Hollywood functions or with SDL
renderer functions. Mixing both is possible but might yield some unexpected results because
Hollywood drawing functions will of course change state information of the SDL renderer
themselves, i.e. if you call sdl.SetRenderDrawColor() to set the drawing color to red

12 RebelSDL manual

and then use Hollywood’s Box() command to draw a blue box, then the renderer color
will suddenly be blue because the call to Box() has changed the renderer color to blue.
These are side effects you have to be able to deal with when mixing SDL renderer calls and
Hollywood drawing calls.

3.7 Joysticks and game controllers

RebelSDL allows you to access SDL’s comprehensive joystick and game controller
functionalities. For the best compatibility, it is recommended to place a file named
gamecontrollerdb.txt in the same directory as your script. This file has to contain
calibration information for all the different joysticks and game controllers out there. You
can find a community-maintained version of this file here: https://github.com/gabomdq/
SDL_GameControllerDB

3.8 Increasing execution speed

To increase the raw execution speed of your script, you can disable Hollywood’s line hook
using the DisableLineHook() and EnableLineHook() commands. This will improve your
script’s execution speed significantly in case lots of Hollywood code needs to be run to draw
the next frame. Keep in mind, though, that you have to enable the line hook for every
frame you draw or your window will become unresponsive. Here’s what a speed-optimized
implemention of the main loop could look like:

@REQUIRE "rebelsdl"

BeginDoubleBuffer(True) ; set up a hardware double buffer

Repeat

DisableLineHook() ; disable line hook while drawing the next frame

p_DrawFrame() ; draw the next frame here

EnableLineHook() ; enable line hook again

Flip() ; wait for vertical refresh, then flip buffers

CheckEvent() ; run event callbacks

Forever

Note that you’ll only notice a speed difference here if p_DrawFrame() executes many lines
of Hollywood code. If p_DrawFrame() only consists of 20 lines of code, you won’t notice
any difference. It’s only noticeable with hundreds of code lines or long loops.

See the documentation of DisableLineHook() and EnableLineHook() in the Hollywood
manual for more information.

3.9 RebelSDL as a helper plugin

RebelSDL can also be used as a helper plugin to work around the problem that Hollywood
only supports hardware-accelerated double buffers and brushes on AmigaOS and compati-
bles. They aren’t supported on Windows, Mac OS X, or Linux. If you install and @REQUIRE

RebelSDL, however, hardware double buffer and hardware brush support will also be avail-
able on Windows, Mac OS X, and Linux because RebelSDL supports this.

https://github.com/gabomdq/SDL_GameControllerDB
https://github.com/gabomdq/SDL_GameControllerDB

Chapter 3: Usage 13

Thus, you can also use RebelSDL as a helper plugin just to get hardware-accelerated double
buffer support on Windows, Mac OS X, and Linux. You don’t even have to use any of the
SDL commands directly. You can just @REQUIRE RebelSDL, set up a hardware double
buffer and then draw to it using hardware brushes. This allows you to utilize hardware
acceleration without having to write a single line of SDL code!

On AmigaOS and compatibles this isn’t necessary since Hollywood already supports hard-
ware accelerated double buffers and brushes by default. Still, using RebelSDL on AmigaOS
as a hardware double buffer driver can be of benefit in full screen mode because RebelSDL
uses drawing which is perfectly synchronized with the monitor’s vertical refresh so it usually
looks better than double buffers managed by Hollywood directly.

See Section 3.2 [Using a hardware double buffer], page 8, for details.

See Section 3.4 [Using hardware brushes], page 10, for details.

The SmoothScroll.hws example script that comes with RebelSDL demonstrates how to
use hardware brushes and a hardware double buffer to achieve butter-smooth scrolling that
is fully synchronized with the monitor’s vertical refresh.

3.10 Raspberry Pi peculiarities

RebelSDL can be very useful on the Raspberry Pi because of its comparatively poor CPU
which makes Hollywood’s inbuilt CPU renderer very slow. Using RebelSDL will give you
hardware-accelerated drawing and scaling which can boost your script’s performance dra-
matically. However, there are some things that you have to keep in mind. First of all, there
are two entirely different drivers available for the Raspberry Pi:

1. VideoCore 4 OpenGL driver (KMS/DRM): Since 2017 Raspbian Jessie ships with an
experimental vc4 KMS/DRM OpenGL driver. To enable this driver, you need to run
sudo raspi-config go to the Advanced Options settings and then select GL (Full

KMS) in the GL Driver menu. Once you have rebooted your system, X11 will then use
this new vc4 driver and RebelSDL will be able to use it too. Note that you have to
make sure that you’re using a recent version of Raspbian Jessie (2017 or newer) or
Raspbian Stretch. Older versions of Jessie don’t have this driver yet. Also note that as
of September 2017, activating the new vc4 driver breaks HDMI audio output on Jessie
(not on Stretch). So as of September 2017, you’ll only be able to get audio through
the headphone output on Jessie when the vc4 driver is enabled.

2. Raspberry Pi native driver: This is an alternative driver which directly accesses the
graphics hardware of the Pi bypassing OpenGL and X11 completely. This means that
you can run your scripts from outside X11 as well. This driver will also work with older
versions of Raspbian Jessie but only if the experimental OpenGL driver (see above) is
disabled. To activate the native Raspberry Pi renderer, you need to pass rpi to the
RenderDriver tag when @REQUIRE’ing RebelSDL, like so:

@REQUIRE "rebelsdl", {RenderDriver = "rpi"}

RebelSDL will then use the native Raspberry Pi renderer. Note that since the native
Pi renderer operates outside X11 it will always take over the whole screen. It is not
possible to run the native Pi renderer in windowed mode. It will always fill the entire
screen. All Hollywood features that require a window won’t work with the native Pi
renderer either.

14 RebelSDL manual

By default, RebelSDL will use the vc4 OpenGL driver and if it is not there, it will fall back
to software OpenGL mode, which is of course very slow. The native Pi renderer will only
be activated if you explicitly request it like shown above.

15

4 Examples

4.1 Examples

RebelSDL comes with a number of examples that demonstrates how to use the plugin and
should allow you to get started really quickly. Here’s a list of examples that are distributed
with RebelSDL:

Aladdin A RebelSDL port of the Prodigy cracktro for Aladdin.

BeastScroll
A remake of the famous Shadow of the Beast scroller in RebelSDL.

CannonFodder
A RebelSDL port of the Cannon Fodder cracktro by Crystal.

Creatures A RebelSDL port of the Creatures cracktro by Crystal.

Dynablaster
A RebelSDL port of the Dynablaster cracktro by Vision Factory.

GPUScale Demonstrates how to use GPU-accelerated scaling and rotation with RebelSDL.

Lemmings A RebelSDL port of the Lemmings cracktro by Skid Row.

Moonstone
A RebelSDL port of the Moonstone cracktro by Crystal.

MultiDisplays
Demonstrates how to use multiple displays with RebelSDL.

Pang A RebelSDL port of the Pang cracktro by Horizon.

PPHammer
A RebelSDL port of the PP Hammer cracktro by Crystal.

SmoothScroll
Demonstrates how to achieve perfectly smooth scrolling with hardware brushes.

SteelEmpire
A RebelSDL port of the Steel Empire cracktro by Crystal.

Superfrog A RebelSDL port of the Superfrog cracktro by Crystal.

SuperStardust
A RebelSDL port of the Super Stardust cracktro by Prestige.

Turrican2 A RebelSDL port of the Turrican 2 cracktro by Defjam.

Turrican3 A RebelSDL port of the Turrican 3 cracktro by Hoodlum.

Zool A RebelSDL port of the Zool cracktro by Crystal.

17

5 Joystick reference

5.1 sdl.ForceJoystickMode

NAME
sdl.ForceJoystickMode – force game controller into joystick mode

SYNOPSIS
sdl.ForceJoystickMode(port)

FUNCTION
Use this function to force the game controller at the specified port into joystick mode.
You will then be able to query the game controller’s state as if it was a joystick.

INPUTS

port game port to use

5.2 sdl.GetAxis

NAME
sdl.GetAxis – query state of specified axis

SYNOPSIS
state = sdl.GetAxis(port, axis)

FUNCTION
If the device at the specified port is a joystick, axis must be the number of the axis to
query. 0 is typically used for the x-axis and 1 for the y-axis. Some joysticks use axes 2
or 3 for extra buttons. You can use sdl.GetNumAxes() to find out the number of axes.

If the device at the specified port is a game controller, axis must be one of the following
predefined constants:

#SDL_AXIS_LEFTX

#SDL_AXIS_LEFTY

#SDL_AXIS_RIGHTX

#SDL_AXIS_RIGHTY

#SDL_AXIS_TRIGGERLEFT

#SDL_AXIS_TRIGGERRIGHT

The return value is a value ranging from -32768 to 32767. It may be necessary to impose
certain tolerances on these values to account for jitter. Note that game controller triggers,
however, range from 0 to 32767. They never return a negative value.

INPUTS

port game port to query

axis axis to query

RESULTS

state state of the specified axis (typically -32768 to 32767)

18 RebelSDL manual

5.3 sdl.GetBall

NAME
sdl.GetBall – query state of specified ball

SYNOPSIS
dx, dy = sdl.GetBall(port, ball)

FUNCTION
Use this function to get the ball axis change since the last poll. This is only possible for
joysticks, not for game controllers.

You have to pass the ball index to query in ball. Ball indices start at index 0.
sdl.GetBall() will return the difference in the x and y axis position since the last
poll. Note that since trackballs can only return relative motion these return values are
delta values.

INPUTS

port game port to query

ball ball index to query

RESULTS

dx the difference in the x axis position since the last poll

dy the difference in the y axis position since the last poll

5.4 sdl.GetButton

NAME
sdl.GetButton – query state of specified button

SYNOPSIS
state = sdl.GetButton(port, button)

FUNCTION
If the device at the specified port is a joystick, button must be the index of the desired
button (starting from 0). The number of joystick buttons can be found out by calling
sdl.GetNumButtons().

If the device at the specified port is a game controller, button must be one of the
following predefined constants:

#SDL_BUTTON_A

#SDL_BUTTON_B

#SDL_BUTTON_X

#SDL_BUTTON_Y

#SDL_BUTTON_BACK

#SDL_BUTTON_GUIDE

#SDL_BUTTON_START

#SDL_BUTTON_LEFTSTICK

#SDL_BUTTON_RIGHTSTICK

Chapter 5: Joystick reference 19

#SDL_BUTTON_LEFTSHOULDER

#SDL_BUTTON_RIGHTSHOULDER

#SDL_BUTTON_DPAD_UP

#SDL_BUTTON_DPAD_DOWN

#SDL_BUTTON_DPAD_LEFT

#SDL_BUTTON_DPAD_RIGHT

INPUTS

port game port to query

button button to query

RESULTS

state state of the specified button (1 for pressed state, 0 non-pressed state)

5.5 sdl.GetHat

NAME
sdl.GetHat – query state of specified hat

SYNOPSIS
state = sdl.GetHat(port, hat)

FUNCTION
Use this function to get the current state of a POV hat on a joystick. This is only
possible for joysticks, not for game controllers. You have to pass the hat index to get
the state from. Hat indices start at index 0.

The return value will be one of the following predefined constants:

#SDL_HAT_CENTERED

#SDL_HAT_UP

#SDL_HAT_RIGHT

#SDL_HAT_DOWN

#SDL_HAT_LEFT

#SDL_HAT_RIGHTUP

#SDL_HAT_RIGHTDOWN

#SDL_HAT_LEFTUP

#SDL_HAT_LEFTDOWN

INPUTS

port game port to query

hat hat index whose state to get

RESULTS

state state of specified hat

20 RebelSDL manual

5.6 sdl.GetJoysticks

NAME
sdl.GetJoysticks – get number of available joysticks

SYNOPSIS
n = sdl.GetJoysticks()

FUNCTION
Use this function to count the number of joysticks attached to the system.

INPUTS
none

RESULTS

n number of attached joysticks

5.7 sdl.GetNumAxes

NAME
sdl.GetNumAxes – get number of joystick axes

SYNOPSIS
num = sdl.GetNumAxes(port)

FUNCTION
Use this function to get the number of general axis controls on a joystick. This is only
possible for joysticks, not for game controllers.

INPUTS

port game port to query

RESULTS

num number of joystick axes

5.8 sdl.GetNumBalls

NAME
sdl.GetNumBalls – get number of joystick balls

SYNOPSIS
num = sdl.GetNumBalls(port)

FUNCTION
Use this function to get the number of trackballs on a joystick. This is only possible for
joysticks, not for game controllers.

INPUTS

port game port to query

RESULTS

num number of joystick trackballs

Chapter 5: Joystick reference 21

5.9 sdl.GetNumButtons

NAME
sdl.GetNumButtons – get number of joystick buttons

SYNOPSIS
num = sdl.GetNumButtons(port)

FUNCTION
Use this function to get the number of buttons on a joystick. This is only possible for
joysticks, not for game controllers.

INPUTS

port game port to query

RESULTS

num number of joystick buttons

5.10 sdl.GetNumHats

NAME
sdl.GetNumHats – get number of joystick hats

SYNOPSIS
num = sdl.GetNumHats(port)

FUNCTION
Use this function to get the number of POV hats on a joystick. This is only possible for
joysticks, not for game controllers.

INPUTS

port game port to query

RESULTS

num number of joystick hats

5.11 sdl.IsGameController

NAME
sdl.IsGameController – check if input device is a game controller

SYNOPSIS
res = sdl.IsGameController(port)

FUNCTION
Use this function to find out whether the input device at the specified port is a game
controller or a joystick. The function will return True for game controllers and False

for joysticks.

INPUTS

port game port to query

22 RebelSDL manual

RESULTS

res boolean value

23

6 Keyboard reference

6.1 sdl.SetTextInputRect

NAME
sdl.SetTextInputRect – set the rectangle used to type Unicode text inputs

SYNOPSIS
sdl.SetTextInputRect(x, y, width, height)

FUNCTION
Use this function to set the rectangle used to type Unicode text inputs.

INPUTS

x x position

y y position

width rectangle width

height rectangle height

6.2 sdl.StartTextInput

NAME
sdl.StartTextInput – start accepting Unicode text events

SYNOPSIS
sdl.StartTextInput()

FUNCTION
This function will start accepting Unicode text input events in the focused RebelSDL
window, and start emitting VanillaKey. Please use this function in pair with
sdl.StopTextInput().

On some platforms using this function activates the screen keyboard.

INPUTS
none

6.3 sdl.StopTextInput

NAME
sdl.StopTextInput – stop receiving Unicode text events

SYNOPSIS
sdl.StopTextInput()

FUNCTION
Use this function to stop receiving any Unicode text input events. See Section 6.2
[sdl.StartTextInput], page 23, for details.

24 RebelSDL manual

INPUTS
none

25

7 Renderer reference

7.1 sdl.EnableOffscreenRender

NAME
sdl.EnableOffscreenRender – enable hardware brush offscreen rendering

SYNOPSIS
sdl.EnableOffscreenRender(on)

FUNCTION
This function can be used to enable or disable offscreen rendering to hardware brushes,
depending on what you pass in the on argument.

Please note that the new setting will only affect hardware brushes created after you have
made this call. Hardware brushes created before your call of this function will use the
old setting.

Also note that hardware brushes that can be drawn to face some limitations. See
Section 3.5 [Offscreen rendering], page 11, for details. That’s why you should only
use this function if your script is able to deal with these limitations. The advantage is
that sdl.EnableOffscreenRender() allows your script to draw to offscreen hardware
brushes with hardware acceleration. But you have to keep some things in mind when
doing so. See Section 3.5 [Offscreen rendering], page 11, for details.

INPUTS

on boolean indicating whether to enable or disable hardware brush offscreen
rendering

EXAMPLE
sdl.EnableOffscreenRender(True)

CreateBrush(1, 640, 480, #BLACK, {Hardware = True})

sdl.EnableOffscreenRender(False)

The code above creates brush 1 as a hardware brush that can be drawn to using
SelectBrush(). All other hardware brushes cannot be drawn to because we imme-
diately set the enable offscreen render flag to False again.

7.2 sdl.GetCurrentRenderDriver

NAME
sdl.GetCurrentRenderDriver – get current render driver

SYNOPSIS
d$ = sdl.GetCurrentRenderDriver(display)

FUNCTION
This function returns the name of the current render driver, e.g. opengl, direct3d,
opengles, etc.

INPUTS

display identifier of display whose renderer should be retrieved

26 RebelSDL manual

RESULTS

d$ name of the current render driver

7.3 sdl.GetRenderDrawBlendMode

NAME
sdl.GetRenderDrawBlendMode – get draw blend mode

SYNOPSIS
blendmode = sdl.GetRenderDrawBlendMode(display)

FUNCTION
Use this function to get the blend mode used for drawing operations. See Section 7.24
[sdl.SetRenderDrawBlendMode], page 36, for a list of blend modes.

INPUTS

display identifier of display whose renderer should be used

RESULTS

blendmode

current blend mode

7.4 sdl.GetRenderDrawColor

NAME
sdl.GetRenderDrawColor – get draw color

SYNOPSIS
r, g, b, a = sdl.GetRenderDrawColor(display)

FUNCTION
Use this function to get the color used for drawing operations (rect, line and clear).

INPUTS

display identifier of display whose renderer should be used

RESULTS

r the red value used to draw on the rendering target (ranging from 0 to 255)

g the green value used to draw on the rendering target (ranging from 0 to 255)

b the blue value used to draw on the rendering target (ranging from 0 to 255)

a the alpha value used to draw on the rendering target (ranging from 0 to 255)

Chapter 7: Renderer reference 27

7.5 sdl.GetRendererOutputSize

NAME
sdl.GetRendererOutputSize – get renderer output size

SYNOPSIS
w, h = sdl.GetRendererOutputSize(display)

FUNCTION
Use this function to get the output size in pixels of a rendering context. If an error
occurs, -1 is returned in both return values.

INPUTS

display identifier of display whose renderer should be used

RESULTS

w output width

h output height

7.6 sdl.GetTextureAlphaMod

NAME
sdl.GetTextureAlphaMod – get texture alpha modulation

SYNOPSIS
alpha = sdl.GetTextureAlphaMod(tex)

FUNCTION
Use this function to get the additional alpha value multiplied into render copy operations.
The tex argument must simply be the identifier of a hardware brush.

INPUTS

tex identifier of hardware brush

RESULTS

alpha alpha modulation or -1 on error

7.7 sdl.GetTextureBlendMode

NAME
sdl.GetTextureBlendMode – get texture blend mode

SYNOPSIS
mode = sdl.GetTextureBlendMode(tex)

FUNCTION
Use this function to get the blend mode used for texture copy operations. The tex

argument must simply be the identifier of a hardware brush.

See Section 7.24 [sdl.SetRenderDrawBlendMode], page 36, for a list of blend modes.

28 RebelSDL manual

INPUTS

tex identifier of hardware brush

RESULTS

mode the blend mode or -1 on error

7.8 sdl.GetTextureColorMod

NAME
sdl.GetTextureColorMod – get texture color modulation

SYNOPSIS
r, g, b = sdl.GetTextureColorMod(tex)

FUNCTION
Use this function to get the additional color value multiplied into render copy operations.
The tex argument must simply be the identifier of a hardware brush.

On error, this function returns -1 in all return values.

INPUTS

tex identifier of hardware brush

RESULTS

r the red color value multiplied into copy operations (ranging from 0 to 255)

g the green color value multiplied into copy operations (ranging from 0 to 255)

b the blue color value multiplied into copy operations (ranging from 0 to 255)

7.9 sdl.RenderClear

NAME
sdl.RenderClear – clear target

SYNOPSIS
sdl.RenderClear(display)

FUNCTION
Use this function to clear the current rendering target with the drawing color. This
function clears the entire rendering target, ignoring the viewport and the clip rectangle.

INPUTS

display identifier of display whose renderer should be used

Chapter 7: Renderer reference 29

7.10 sdl.RenderCopy

NAME
sdl.RenderCopy – draw texture

SYNOPSIS
sdl.RenderCopy(display, tex[, src, dst, angle, center, flip])

FUNCTION
Use this function to copy a portion of the texture specified by tex to the display specified
by display, optionally rotating it by angle around the given center point and also
flipping it top-bottom and/or left-right. The tex argument must simply be the identifier
of a hardware brush.

If specified, src and dst must be tables containing the following fields:

x Left position of rectangle.

y Top position of rectangle.

w Rectangle width.

h Rectangle height.

Alternatively, you can also set src and/or dst to Nil. Passing Nil in src and/or
dst means to use the entire size of the source or destination, respectively. If source and
destination sizes do not match, sdl.RenderCopy() will automatically stretch the texture
to fit to the destination rectangle.

If specified, center must be a table containing the following fields:

x Left position of center point.

y Top position of center point.

Alternatively, you can also set center to Nil. In that case, the center point will be set
to the center of the destination rectangle.

If specified, flip must be a combination of the following predefined constants:

#SDL_FLIP_NONE

Do not flip

#SDL_FLIP_HORIZONTAL

Flip horizontally

#SDL_FLIP_VERTICAL

Flip vertically

The texture is blended with the destination based on its blend mode set with
sdl.SetTextureBlendMode().

The texture color is affected based on its color modulation set by
sdl.SetTextureColorMod().

The texture alpha is affected based on its alpha modulation set by
sdl.SetTextureAlphaMod().

INPUTS

display identifier of display whose renderer should be used

30 RebelSDL manual

tex identifier of hardware brush

src optional: rectangle in the texture to use (defaults to Nil which means use
the whole texture)

dst optional: rectangle to draw to the display (defaults to Nil which means fill
the entire display)

angle optional: angle in degrees to apply to the destination rectangle in clockwise
direction (defaults to 0)

center optional: point around which to rotate the destination rectangle (defaults
to Nil which means destination rectangle center)

flip optional: flipping actions that should be performed (defaults to #SDL_FLIP_

NONE)

7.11 sdl.RenderDrawLine

NAME
sdl.RenderDrawLine – draw line

SYNOPSIS
sdl.RenderDrawLine(display, x1, y1, x2, y2)

FUNCTION
Use this function to draw a line on the current rendering target.

The current drawing color is set by sdl.SetRenderDrawColor(), and the color’s
alpha value is ignored unless blending is enabled with the appropriate call to
sdl.SetRenderDrawBlendMode().

INPUTS

display identifier of display whose renderer should be used

x1 the x coordinate of the start point

y1 the y coordinate of the start point

x2 the x coordinate of the end point

y2 the y coordinate of the end point

7.12 sdl.RenderDrawPoint

NAME
sdl.RenderDrawPoint – draw point

SYNOPSIS
sdl.RenderDrawPoint(display, x, y)

FUNCTION
Use this function to draw a point on the current rendering target.

Chapter 7: Renderer reference 31

The current drawing color is set by sdl.SetRenderDrawColor(), and the color’s
alpha value is ignored unless blending is enabled with the appropriate call to
sdl.SetRenderDrawBlendMode().

INPUTS

display identifier of display whose renderer should be used

x the x coordinate of the point

y the y coordinate of the point

7.13 sdl.RenderDrawRect

NAME
sdl.RenderDrawRect – draw rectangle outline

SYNOPSIS
sdl.RenderDrawRect(display[, x, y, w, h])

FUNCTION
Use this function to draw a rectangle on the current rendering target. If you leave out
the optional arguments, the whole rendering target will be outlined.

The current drawing color is set by sdl.SetRenderDrawColor(), and the color’s
alpha value is ignored unless blending is enabled with the appropriate call to
sdl.SetRenderDrawBlendMode().

INPUTS

display identifier of display whose renderer should be used

x optional: the x coordinate of the upper left corner

y optional: the y coordinate of the upper left corner

w optional: the rectangle width

h optional: the rectangle height

7.14 sdl.RenderFillRect

NAME
sdl.RenderFillRect – draw filled rectangle

SYNOPSIS
sdl.RenderFillRect(display[, x, y, w, h])

FUNCTION
Use this function to fill a rectangle on the current rendering target. If you leave out the
optional arguments, the whole rendering target will be filled.

The current drawing color is set by sdl.SetRenderDrawColor(), and the color’s
alpha value is ignored unless blending is enabled with the appropriate call to
sdl.SetRenderDrawBlendMode().

32 RebelSDL manual

INPUTS

display identifier of display whose renderer should be used

x optional: the x coordinate of the upper left corner

y optional: the y coordinate of the upper left corner

w optional: the rectangle width

h optional: the rectangle height

7.15 sdl.RenderGetClipRect

NAME
sdl.RenderGetClipRect – get clip rectangle

SYNOPSIS
x, y, w, h = sdl.RenderGetClipRect(display)

FUNCTION
Use this function to get the clip rectangle for the current target.

INPUTS

display identifier of display whose renderer should be used

RESULTS

x the x coordinate of the upper left corner

y the y coordinate of the upper left corner

w the rectangle width

h the rectangle height

7.16 sdl.RenderGetLogicalSize

NAME
sdl.RenderGetLogicalSize – get logical size

SYNOPSIS
w, h = sdl.RenderGetLogicalSize(display)

FUNCTION
Use this function to get device independent resolution for rendering. If
this function is called on a renderer which never had its logical size set by
sdl.RenderSetLogicalSize(), this function returns 0 in both w and h.

INPUTS

display identifier of display whose renderer should be used

RESULTS

w the width of the logical resolution

h the height of the logical resolution

Chapter 7: Renderer reference 33

7.17 sdl.RenderGetScale

NAME
sdl.RenderGetScale – get scaling factors

SYNOPSIS
scalex, scaley = sdl.RenderGetScale(display)

FUNCTION
Use this function to get the drawing scale for the current target.

INPUTS

display identifier of display whose renderer should be used

RESULTS

scalex the horizontal scaling factor

scaley the vertical scaling factor

7.18 sdl.RenderGetViewport

NAME
sdl.RenderGetViewport – get viewport

SYNOPSIS
x, y, w, h = sdl.RenderGetViewport(display)

FUNCTION
Use this function to get the drawing area for the current target.

INPUTS

display identifier of display whose renderer should be used

RESULTS

x the x coordinate of the upper left corner

y the y coordinate of the upper left corner

w the rectangle width

h the rectangle height

7.19 sdl.RenderPresent

NAME
sdl.RenderPresent – flip buffers

SYNOPSIS
sdl.RenderPresent(display)

34 RebelSDL manual

FUNCTION
Use this function to update the screen with any rendering performed since the previous
call.

SDL’s rendering functions operate on a backbuffer; that is, calling a rendering function
such as sdl.RenderDrawLine() does not directly put a line on the screen, but rather up-
dates the backbuffer. As such, you compose your entire scene and present the composed
backbuffer to the screen as a complete picture.

Therefore, when using SDL’s rendering API, one does all drawing intended for the frame,
and then calls this function once per frame to present the final drawing to the user.

The backbuffer should be considered invalidated after each present; do not assume
that previous contents will exist between frames. You are strongly encouraged to call
sdl.RenderClear() to initialize the backbuffer before starting each new frame’s draw-
ing, even if you plan to overwrite every pixel.

INPUTS

display identifier of display whose renderer should be used

7.20 sdl.RenderSetClipRect

NAME
sdl.RenderSetClipRect – set clip rectangle

SYNOPSIS
sdl.RenderSetClipRect(display[, x, y, w, h])

FUNCTION
Use this function to set the clip rectangle for rendering on the specified target. If you
leave out the optional arguments, clipping will be disabled.

INPUTS

display identifier of display whose renderer should be used

x optional: the x coordinate of the upper left corner

y optional: the y coordinate of the upper left corner

w optional: the rectangle width

h optional: the rectangle height

7.21 sdl.RenderSetLogicalSize

NAME
sdl.RenderSetLogicalSize – set logical size

SYNOPSIS
sdl.RenderSetLogicalSize(display, w, h)

FUNCTION
Use this function to set a device independent resolution for rendering.

Chapter 7: Renderer reference 35

INPUTS

display identifier of display whose renderer should be used

w the width of the logical resolution

h the height of the logical resolution

7.22 sdl.RenderSetScale

NAME
sdl.RenderSetScale – set scaling factors

SYNOPSIS
sdl.RenderSetScale(display, scalex, scaley)

FUNCTION
Use this function to set the drawing scale for rendering on the current target. The
drawing coordinates are scaled by the x/y scaling factors before they are used by the
renderer. This allows resolution independent drawing with a single coordinate system.

If this results in scaling or subpixel drawing by the rendering backend, it will be handled
using the appropriate quality hints. For best results use integer scaling factors.

INPUTS

display identifier of display whose renderer should be used

scalex the horizontal scaling factor

scaley the vertical scaling factor

7.23 sdl.RenderSetViewport

NAME
sdl.RenderSetViewport – set viewport

SYNOPSIS
sdl.RenderSetViewport(display[, x, y, w, h])

FUNCTION
Use this function to set the drawing area for rendering on the current target. If you leave
out the optional arguments, the viewport is set to the entire target. When the window
is resized, the current viewport is automatically centered within the new window size.

INPUTS

display identifier of display whose renderer should be used

x optional: the x coordinate of the upper left corner

y optional: the y coordinate of the upper left corner

w optional: the rectangle width

h optional: the rectangle height

36 RebelSDL manual

7.24 sdl.SetRenderDrawBlendMode

NAME
sdl.SetRenderDrawBlendMode – set draw blend mode

SYNOPSIS
sdl.SetRenderDrawBlendMode(display, blendmode)

FUNCTION
Use this function to set the blend mode used for drawing operations (fill and line).

#SDL_BLENDMODE_NONE

no blending

dstRGBA = srcRGBA

#SDL_BLENDMODE_BLEND

alpha blending

dstRGB = (srcRGB * srcA) + (dstRGB * (1-srcA))

dstA = srcA + (dstA * (1-srcA))

#SDL_BLENDMODE_ADD

additive blending

dstRGB = (srcRGB * srcA) + dstRGB

dstA = dstA

#SDL_BLENDMODE_MOD

color modulate

dstRGB = srcRGB * dstRGB

dstA = dstA

INPUTS

display identifier of display whose renderer should be used

blendmode

one of the blend modes from above

7.25 sdl.SetRenderDrawColor

NAME
sdl.SetRenderDrawColor – set draw color

SYNOPSIS
sdl.SetRenderDrawColor(display, r, g, b[, a])

FUNCTION
Use this function to set the color for drawing or filling rectangles, lines, and points, and
for sdl.RenderClear().

If you want to have alpha blending, use sdl.SetRenderDrawBlendMode() to specify how
the alpha channel is used.

INPUTS

display identifier of display whose renderer should be used

Chapter 7: Renderer reference 37

r the red value used to draw on the rendering target (ranging from 0 to 255)

g the green value used to draw on the rendering target (ranging from 0 to 255)

b the blue value used to draw on the rendering target (ranging from 0 to 255)

a optional: the alpha value used to draw on the rendering target (defaults to
#SDL_ALPHA_OPAQUE)

7.26 sdl.SetRenderTarget

NAME
sdl.SetRenderTarget – set render target

SYNOPSIS
sdl.SetRenderTarget(display[, tex])

FUNCTION
Use this function to set a texture as the current rendering target. The tex argument
must simply be the identifier of a hardware brush. If you leave out the tex argument,
the default render target is used.

INPUTS

display identifier of display whose renderer should be used

tex optional: hardware brush to use as target

7.27 sdl.SetTextureAlphaMod

NAME
sdl.SetTextureAlphaMod – set texture alpha modulation

SYNOPSIS
r = sdl.SetTextureAlphaMod(tex, alpha)

FUNCTION
Use this function to set an additional alpha value multiplied into render copy operations.
When this texture is rendered, during the copy operation the source alpha value is
modulated by this alpha value according to the following formula:

srcA = srcA * (alpha / 255)

Note that alpha modulation is not always supported by the renderer; it will return -1 if
alpha modulation is not supported.

The tex argument must simply be the identifier of a hardware brush.

INPUTS

tex identifier of hardware brush

alpha the source alpha value multiplied into copy operations (ranging from 0 to
255)

38 RebelSDL manual

RESULTS

r 0 on success or a negative error code on failure

7.28 sdl.SetTextureBlendMode

NAME
sdl.SetTextureBlendMode – set texture blend mode

SYNOPSIS
r = sdl.SetTextureBlendMode(tex, blendmode)

FUNCTION
Use this function to set the blend mode for a texture, used by sdl.RenderCopy().

blendmode may be one of the following:

#SDL_BLENDMODE_NONE

no blending

dstRGBA = srcRGBA

#SDL_BLENDMODE_BLEND

alpha blending

dstRGB = (srcRGB * srcA) + (dstRGB * (1-srcA))

dstA = srcA + (dstA * (1-srcA))

#SDL_BLENDMODE_ADD

additive blending

dstRGB = (srcRGB * srcA) + dstRGB

dstA = dstA

#SDL_BLENDMODE_MOD

color modulate

dstRGB = srcRGB * dstRGB

dstA = dstA

If the blend mode is not supported, the closest supported mode is chosen and this function
returns -1. The tex argument must simply be the identifier of a hardware brush.

INPUTS

tex identifier of hardware brush

blendmode

the blend mode to use for texture blending (see above)

RESULTS

r 0 on success or a negative error code on failure

Chapter 7: Renderer reference 39

7.29 sdl.SetTextureColorMod

NAME
sdl.SetTextureColorMod – set texture color modulation

SYNOPSIS
r = sdl.SetTextureColorMod(tex, r, g, b)

FUNCTION
Use this function to set an additional color value multiplied into render copy operations.
When this texture is rendered, during the copy operation each source color channel is
modulated by the appropriate color value according to the following formula:

srcC = srcC * (color / 255)

Color modulation is not always supported by the renderer; it will return -1 if color
modulation is not supported.

The tex argument must simply be the identifier of a hardware brush.

INPUTS

tex identifier of hardware brush

r the red color value multiplied into copy operations (ranging from 0 to 255)

g the green color value multiplied into copy operations (ranging from 0 to 255)

b the blue color value multiplied into copy operations (ranging from 0 to 255)

RESULTS

r 0 on success or a negative error code on failure

41

8 System reference

8.1 sdl.ClearError

NAME
sdl.ClearError – clear last error

SYNOPSIS
sdl.ClearError()

FUNCTION
Use this function to clear any previous error message.

INPUTS
none

8.2 sdl.GetCurrentVideoDriver

NAME
sdl.GetCurrentVideoDriver – get current video driver

SYNOPSIS
d$ = sdl.GetCurrentVideoDriver()

FUNCTION
This function returns the name of the current video driver, e.g. windows, cocoa, x11,
etc.

INPUTS
none

RESULTS

d$ name of the current video driver

8.3 sdl.GetError

NAME
sdl.GetError – get last error

SYNOPSIS
e$ = sdl.GetError()

FUNCTION
Returns a message with information about the specific error that occurred, or an empty
string if there hasn’t been an error message set since the last call to sdl.ClearError().
The message is only applicable when an SDL function has signaled an error. You must
check the return values of SDL function calls to determine when to appropriately call
sdl.GetError().

42 RebelSDL manual

INPUTS
none

RESULTS

e$ last error message or empty string

8.4 sdl.GetVersion

NAME
sdl.GetVersion – get SDL version

SYNOPSIS
ver, rev, patch = sdl.GetVersion()

FUNCTION
Use this function to get the version of SDL that is linked against your program.

INPUTS
none

RESULTS

ver major version

rev minor version

patch update version (patch level)

43

9 Window reference

9.1 sdl.SetWindowFullscreen

NAME
sdl.SetWindowFullscreen – switch display mode

SYNOPSIS
sdl.SetWindowFullscreen(display, mode)

FUNCTION
Use this function to set a window’s fullscreen state.

mode must be one of the following predefined constants:

#SDL_WINDOW_FULLSCREEN

Real fullscreen with a videomode change

#SDL_WINDOW_FULLSCREEN_DESKTOP

Fake fullscreen that takes the size of the desktop

#SDL_WINDOW_WINDOW

Windowed mode

INPUTS

display identifier of display whose renderer should be used

mode new display mode

45

Appendix A Licenses

A.1 SDL license

Simple DirectMedia Layer Copyright (C) 1997-2016 Sam Lantinga <slouken@libsdl.org>

This software is provided ’as-is’, without any express or implied warranty. In no event will
the authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you
wrote the original software. If you use this software in a product, an acknowledgment
in the product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented
as being the original software.

3. This notice may not be removed or altered from any source distribution.

47

Index

sdl.ClearError . 41
sdl.EnableOffscreenRender 25
sdl.ForceJoystickMode . 17
sdl.GetAxis . 17
sdl.GetBall . 17
sdl.GetButton . 18
sdl.GetCurrentRenderDriver 25
sdl.GetCurrentVideoDriver 41
sdl.GetError . 41
sdl.GetHat . 19
sdl.GetJoysticks . 19
sdl.GetNumAxes . 20
sdl.GetNumBalls . 20
sdl.GetNumButtons . 20
sdl.GetNumHats . 21
sdl.GetRenderDrawBlendMode 26
sdl.GetRenderDrawColor . 26
sdl.GetRendererOutputSize 26
sdl.GetTextureAlphaMod . 27
sdl.GetTextureBlendMode . 27
sdl.GetTextureColorMod . 28
sdl.GetVersion . 42
sdl.IsGameController . 21
sdl.RenderClear . 28

sdl.RenderCopy . 28
sdl.RenderDrawLine . 30
sdl.RenderDrawPoint . 30
sdl.RenderDrawRect . 31
sdl.RenderFillRect . 31
sdl.RenderGetClipRect . 32
sdl.RenderGetLogicalSize . 32
sdl.RenderGetScale . 32
sdl.RenderGetViewport . 33
sdl.RenderPresent . 33
sdl.RenderSetClipRect . 34
sdl.RenderSetLogicalSize . 34
sdl.RenderSetScale . 35
sdl.RenderSetViewport . 35
sdl.SetRenderDrawBlendMode 35
sdl.SetRenderDrawColor . 36
sdl.SetRenderTarget . 37
sdl.SetTextInputRect . 23
sdl.SetTextureAlphaMod . 37
sdl.SetTextureBlendMode . 38
sdl.SetTextureColorMod . 38
sdl.SetWindowFullscreen . 43
sdl.StartTextInput . 23
sdl.StopTextInput . 23

	General information
	Introduction
	Terms and conditions
	Requirements
	Installation

	About RebelSDL
	Credits
	Frequently asked questions
	Known issues
	Future
	History

	Usage
	Activating RebelSDL
	Using a hardware double buffer
	Drawing graphics
	Using hardware brushes
	Offscreen rendering
	Using the SDL renderer
	Joysticks and game controllers
	Increasing execution speed
	RebelSDL as a helper plugin
	Raspberry Pi peculiarities

	Examples
	Examples

	Joystick reference
	sdl.ForceJoystickMode
	sdl.GetAxis
	sdl.GetBall
	sdl.GetButton
	sdl.GetHat
	sdl.GetJoysticks
	sdl.GetNumAxes
	sdl.GetNumBalls
	sdl.GetNumButtons
	sdl.GetNumHats
	sdl.IsGameController

	Keyboard reference
	sdl.SetTextInputRect
	sdl.StartTextInput
	sdl.StopTextInput

	Renderer reference
	sdl.EnableOffscreenRender
	sdl.GetCurrentRenderDriver
	sdl.GetRenderDrawBlendMode
	sdl.GetRenderDrawColor
	sdl.GetRendererOutputSize
	sdl.GetTextureAlphaMod
	sdl.GetTextureBlendMode
	sdl.GetTextureColorMod
	sdl.RenderClear
	sdl.RenderCopy
	sdl.RenderDrawLine
	sdl.RenderDrawPoint
	sdl.RenderDrawRect
	sdl.RenderFillRect
	sdl.RenderGetClipRect
	sdl.RenderGetLogicalSize
	sdl.RenderGetScale
	sdl.RenderGetViewport
	sdl.RenderPresent
	sdl.RenderSetClipRect
	sdl.RenderSetLogicalSize
	sdl.RenderSetScale
	sdl.RenderSetViewport
	sdl.SetRenderDrawBlendMode
	sdl.SetRenderDrawColor
	sdl.SetRenderTarget
	sdl.SetTextureAlphaMod
	sdl.SetTextureBlendMode
	sdl.SetTextureColorMod

	System reference
	sdl.ClearError
	sdl.GetCurrentVideoDriver
	sdl.GetError
	sdl.GetVersion

	Window reference
	sdl.SetWindowFullscreen

	Licenses
	SDL license

	Index

