Zip Plugin 1.1

Read and write zip archives with Hollywood

Andreas Falkenhahn

Table of Contents

1 General information............................. 1
1.1 Introduction............ooiiiii i 1
1.2 Terms and conditions...........vviiiiiiiiiiiiiiiiieeeeennnnns 1
1.3 Requirements.ccooiiiiiiiiiiiiii i 2
1.4 TInstallation......... .o 2

2 About zip.hwp............. ... 3
2.1 Oredits . oot 3
2.2 Frequently asked questions............. ... il 3
2.3 KNOWDN ISSUES . . .ttt ettt e 3
2.4 FUbUTE. ..o 3
2.5 HiStOry .o oe e 3

3 Usage. ... 5
3.1 Activating the plugin.......... ... o 5
3.2 Zip archives as directories. ... 5
3.3 Extracting files. ... 6
3.4 Zip archive basics. 6
3.5 Creating zip archives i 7
3.6 Linking files.......coooiiii i 7

4 Function reference................, 9
4.1 zip. AddDirectoryo 9
4.2 zip.AddFile. 9
4.3 zip.CloseArchive.ot 11
4.4 zip.DeleteFile..... . ..o 12
4.5 zip.ExtractFile...... 12
4.6 zip.GetFileAttributes...... ... 13
4.7 zip.GetFileComment......... ... i 14
4.8 zip.GetFileAtIndex 15
4.9 zip.GetObjectType . ..o 15
4.10 gzip.LocateFile...... ..o 16
4.11 zip.OpenArchive. 17
4.12 zip.RenameFile..... 18
4.13 zip.SetDefaultPassword............o i 18
4.14 zip.SetFileCommentcoviiiiiiiii ... 19
4.15 zip.SetFileCompressionoviuitiiiii e 19
4.16 zip.SetFileEncryption.o 20
4.17 zip.SetFileTime 21

ii Zip plugin manual

Appendix A Licenses............................. 23
A1 LibZip HCenSe.t 23
A.2 AES encryption SUPpPOrto.uiiniii 23

1 General information

1.1 Introduction

This plugin allows Hollywood scripts to read and write zip archives. It uses Hollywood
6.0’s new file and directory adapter plugin interfaces which allow you to iterate through zip
archives as if they were normal directories. Files within zip archives can also be accessed
as if the zip archive was a normal directory. It is not necessary to unpack a file stored in a
zip archive to a temporary file before it can be opened. Hollywood 6.0’s file adapter plugin
interface allows direct streaming from the zip archive into the respective file handler.

Additionally, zip.hwp offers a range of functions to read, modify, and write zip archives.
New zip archives can be created, existing zip archives can be opened and modified. There is
a variety of functions which allows you to read, change, and write attributes of files stored in
zip archives. On top of that, zip.hwp also supports reading and storing password-protected
files with strong AES-128, AES-192, and AES-256 encryption.

1.2 Terms and conditions

zip.hwp is (© Copyright 2014-2018 by Andreas Falkenhahn (in the following referred to as
"the author"). All rights reserved.

The program is provided "as-is" and the author cannot be made responsible of any possible
harm done by it. You are using this program absolutely at your own risk. No warranties
are implied or given by the author.

This plugin may be freely distributed as long as the following three conditions are met:
1. No modifications must be made to the plugin.
2. It is not allowed to sell this plugin.

3. If you want to put this plugin on a coverdisc, you need to ask for permission first.

This software uses libzip Copyright (C) 1999-2016 Dieter Baron and Thomas Klausner. See
Section A.1 [Libzip license], page 23, for details.

AES encryption support based on code Copyright (C) 2002 Dr Brian Gladman. See
Section A.2 [AES encryption support|, page 23, for details.

All trademarks are the property of their respective owners.

DISCLAIMER: THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDER AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU

2 Zip plugin manual

FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BE-
ING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PAR-
TIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

1.3 Requirements

— minimum: Hollywood 6.0 or better

— recommended: Hollywood 7.0 or better is recommended because internally zip.hwp
uses UTF-8 for all strings and Hollywood versions before 7.0 aren’t Unicode-aware

1.4 Installation

Installing zip.hwp is straightforward and simple: Just copy the file zip.hwp for the
platform of your choice to Hollywood’s plugins directory. On all systems except on
AmigaOS and compatibles, plugins must be stored in a directory named Plugins that
is in the same directory as the main Hollywood program. On AmigaOS and compatible
systems, plugins must be installed to LIBS:Hollywood instead. On Mac OS X, the
Plugins directory must be inside the Resources directory of the application bundle,
i.e. inside the HollywoodInterpreter.app/Contents/Resources directory. Note that
HollywoodInterpreter.app is stored inside the Hollywood.app application bundle itself,
namely in Hollywood.app/Contents/Resources.

On Windows you should also copy the file zip.chm to the Docs directory of your Hollywood
installation. Then you will be able to get online help by pressing F1 when the cursor is over
a zip.hwp function in the Hollywood IDE.

On Linux and Mac OS copy the zip directory that is inside the Docs directory of zip.hwp’s
distribution archive to the Docs directory of your Hollywood installation. Note that
on Mac OS the Docs directory is within the Hollywood.app application bundle, i.e. in
Hollywood.app/Contents/Resources/Docs.

2 About zip.hwp

2.1 Credits

zip.hwp was written by Andreas Falkenhahn. Work on this project was started in early
2014 as a proof-of-concept demonstration of Hollywood 6.0’s powerful new file and directory
adapter plugin interfaces which allow plugins to hook into Hollywood’s file and directory
handlers. zip.hwp makes use of this feature by making Hollywood think that zip archives
are just directories so that it is possible to iterate through them using Hollywood’s normal
directory functions or open files within zip archives without extracting them first.

If you want to contact me, you can either send an e-mail to andreas@airsoftsoftwair.
de or use the contact form on http://www.hollywood-mal. com.

2.2 Frequently asked questions

This section covers some frequently asked questions. Please read them first before asking
on the mailing list or forum because your problem might have been covered here.

Q: Where can I ask for help?

A: There’s a lively forum at http://forums.hollywood-mal.com and we also have a mailing
list which you can access at airsoft_hollywood@yahoogroups.com. Visit http://www.
hollywood-mal.com for information on how to join the mailing list.

Q: I have found a bug.

A: Please post about it in the dedicated sections of the forum or the mailing list.

2.3 Known issues

Here is a list of things that zip.hwp doesn’t support yet or that may be confusing in some
way:
— thd

2.4 Future

Here are some things that are on my to do list:
— thd

Don’t hesitate to contact me if zip.hwp lacks a certain feature that is important for your
project.

2.5 History

Please see the file history.txt for a complete change log of zip.hwp.

andreas@airsoftsoftwair.de
andreas@airsoftsoftwair.de
http://www.hollywood-mal.com
http://forums.hollywood-mal.com
airsoft_hollywood@yahoogroups.com
http://www.hollywood-mal.com
http://www.hollywood-mal.com

3 Usage

3.1 Activating the plugin

There are two ways of using this plugin: You can either activate the plugin globally by
setting the InstallAdapter tag to True when @REQUIRE-ing it. To do this, simply put the
following preprocessor command at the top of your script:

O@REQUIRE "zip", {InstallAdapter = True}

If you activate the plugin via @REQUIRE, it will become globally available and all ensuing
commands that deal with files will support the opening of files from zip archive sources.
For example, you could do something like this then:

LoadBrush(1, "test.zip/testpicture.jpg")

If you only need to open very few files from zip archive sources, you can also choose to not
activate the plugin globally by omitting the InstallAdapter tag on @REQUIRE and simply
use the Adapter tag offered by most Hollywood commands to tell the respective Hollywood
command to open the file using the zip.hwp plugin. Here is an example:

LoadBrush(1, "test.zip/testpicture.jpg", {Adapter = "zip"})

By using the Adapter tag, LoadBrush() is told to open the specified file using the specified
adapter, which is "zip" in our case. Thus, the Adapter tag allows you to use this plugin
even without having installed a global file adapter for it first.

The same is true for Hollywood functions dealing with directories. Once the zip plugin
has been activated by setting InstallAdapter to True, it is possible to do things like the
following;:

OpenDirectory(l, "test.zip")

You could then iterate over all files and directories in test.zip. If you haven’t activated
the global adapter for zip.hwp, then just use the local Adapter like above, e.g.

OpenDirectory(l, "test.zip", {Adapter = "zip"})

See the next chapter for more details on treating zip archives as directories.

3.2 Zip archives as directories

When setting the InstallAdapter tag to True, the zip plugin hooks into Hollywood’s
directory handler to make Hollywood believe that zip archives are normal directories. This
allows you to iterate over all files and directories inside a zip archive using normal functions
from Hollywood’s DOS library.

For example, to iterate over all files and directory inside a file named test.zip you could
use the following code:

OpenDirectory(1l, "test.zip")
Local e = NextDirectoryEntry(1)
While e <> Nil

DebugPrint (e.name)

e = NextDirectoryEntry(1)
Wend
CloseDirectory(1)

6 Zip plugin manual

If you don’t want to start from the root directory inside test.zip, you can also conveniently
start from a subdirectory by just pretend that test.zip is a directory, e.g. to access a
subdirectory named files inside test.zip just do the following:

OpenDirectory(1l, "test.zip/files")

Finally, it is also possible to recursively iterate through all files and directories inside a zip
archive. Here is a function which does that:

Function p_DumpZip(d$, idt)
Local id = OpenDirectory(Nil, d$)
Local e = NextDirectoryEntry(id)
While e <> Nil
If e.Type = #DOSTYPE_DIRECTORY

DebugPrint (RepeatStr(" ", idt) .. "+", e.name)
p_DumpZip(FullPath(d$, e.name), idt + 4)
Else
DebugPrint (RepeatStr(" ", idt) .. "",e.name,e.size,e.time)
EndIf
e = NextDirectoryEntry(id)
Wend
CloseDirectory(id)
EndFunction

To dump the contents of a zip archive, just call this function like that:
p_DumpZip("test.zip", 0)

It will then print a nice tree of the zip archive’s contents.

3.3 Extracting files

Since zip.hwp hooks into Hollywood’s file handler, extracting files is just a matter of using
Hollywood’s CopyFile() function on the file you wish to extract. For example, to extract
a file named testpicture. jpg from test.zip, just use the following line:

CopyFile("test.zip/testpicture.jpg", "outputdir")

Since CopyFile() can also copy whole directories including all subdirectories and because
zip.hwp hooks into Hollywood’s directory handler as well, it is even possible to extract a
whole archive using CopyFile (), like this:

CopyFile("test.zip", "outputdir")

This, however, will be pretty slow because zip.hwp will open and close the zip archive for
every single file that needs to be extracted which is of course a performance killer. That’s
why zip.hwp also offers a dedicated function to extract files for fine-tuned control over zip
archives. See Section 4.5 [zip.ExtractFile|, page 12, for details.

3.4 Zip archive basics

Zip archives are just a collection of files that are stored at indices ranging from 0 to the
number of entries in the zip archive minus 1. It is not necessary to store directories as
individual entries. Instead, they can also be stored as part of a filename, e.g. if a file is
stored as a/b/c/test.txt in the zip archive, then the directories a, b, and ¢ are implicitly

Chapter 3: Usage 7

declared as existing even though they don’t have their individual entries in the zip archive
but just exist as part of a file.

Of course, directories can also be stored as individual entries instead of as part of a filename.
In that case, they are simply stored as files with a size of 0 bytes with the filename ending in
a slash signalling that the entry is a directory. Since there is no distinct directory entry type
in zip archives, all functions in this plugin dealing with files can also operate on directories
within the zip archive. So don’t be confused that a function like zip.RenameFile () can also
be used to rename directories and zip.DeleteFile() can also delete directories. Inside a
zip archive, directories and files are really pretty much the same except that for directories
their filename ends in a slash to signal that it is not a file.

3.5 Creating zip archives

You can create new zip archives by using the zip.0OpenArchive(), zip.AddFile(), and
zip.CloseArchive() functions. The following code shows how to create a new zip archive
named test.zip that contains the file testpicture. jpg:

zip.OpenArchive(l, "test.zip", #MODE_WRITE)
zip.AddFile(1, "testpicture.jpg")
zip.CloseArchive(1)

Note that zip.AddFile() does not immediately compress the file and write it to the
archive. Instead, files are first collected and they are not compressed and written to the
archive before you call zip.CloseArchive (). This is why closing an archive can take quite
some time. There is also the possibility to pass a callback function which is invoked by
zip.CloseArchive() from time to time so that you can update a status bar or something.

3.6 Linking files

Keep in mind that all files declared in the preprocessor commands are linked automatically
into your applet or executable when Hollywood is in compile mode. Thus, if you do some-
thing like the following, not only testpicture. jpg but the whole zip archive test.zip will
be linked to your applet or executable:

O@BRUSH 1, "test.zip/testpicture.jpg"

If you don’t want that, you can set the optional Link to False. If Link is set to False,
Hollywood won’t link the specified file to your applet or executable. This means, however,
that you have to distribute test.zip with your applet or executable so that the data can
be loaded from it. Here’s how to disable linking:

@BRUSH 1, "test.zip/testpicture.jpg", {Link = False}

When done like this, Hollywood will never link the file into your applet or executable.
Instead, it will always be loaded from the specified file.

4 Function reference

4.1 zip.AddDirectory

NAME

zip.AddDirectory — add directory to zip archive
SYNOPSIS

idx = zip.AddDirectory(id, d$)
FUNCTION

This functions creates a new directory named d$ in the zip archive and returns its index.
The directory will be empty and you can add files to it using the zip.AddFile () function.

INPUTS

id identifier of the zip archive to use

das name of the directory to create in the zip archive
RESULTS

idx index of newly added directory in zip archive

4.2 zip.AddFile

NAME

zip.AddFile — add file to zip archive
SYNOPSIS

idx = zip.AddFile(id, f$[, tablel)
FUNCTION

This function adds the file specified by £$ to the zip archive specified by id and returns
the index of the newly added file. The optional table argument allows you to specify
further options.

The following tags are currently recognized by the optional table argument:

NewName: This tag allows you to store this file with a new name in the zip archive. If
you want to store the file in a subdirectory in the zip archive, you also have
to use this tag and include the name of the subdirectory(s) in NewName. If
NewName is omitted, the file will always be stored in the root directory of the
zip archive.

Encryption:
This tag allows you to set the desired encryption method for the file. It can
be set to one of the following special constants:

#ZIP_EM_NONE:
No encryption. This is the default.

#ZIP_EM_AES_128:
Winzip AES-128 encryption.

10

Zip plugin manual
#ZIP_EM_AES_192:
Winzip AES-192 encryption.
#ZIP_EM_AES_256:
Winzip AES-256 encryption.
If you specify the Encryption tag, it is also necessary to provide a password
that is needed to decrypt the file. You can specify this password in the
Password tag (see below). If you don’t use the Password tag, the default
password set using zip.SetDefaultPassword() is used.
Password:
If the Encryption tag has been set to a value different from #ZIP_EM_
NONE (see above), this tag can be set to a password that should be used
to protect the file. If you omit this tag, the default password set using
zip.SetDefaultPassword () is used.
Compression:
This tag can be used to set the desired compression method for the file. The
following compression methods are currently supported:
#ZIP_CM_DEFAULT:
This is the default setting. Currently the same as #ZIP_CM_
DEFLATE.
#ZIP_CM_STORE:
Store the file uncompressed.
#ZIP_CM_BZIP2:
Compress the file using the bzip2 algorithm.
#ZIP_CM_DEFLATE:
Deflate the file with the zlib algorithm and default options.
Note that only #ZIP_CM_DEFLATE and #ZIP_CM_STORE can be assumed to be
universally supported.
When specifying this tag, you can also pass the CompressionFlags tag to
set the compression level (see below).
CompressionFlags:
This tag can be used to define the compression level. It ranges from 1 for
the fastest compression and 9 for the highest. You can also pass 0 to use the
compressor’s default setting. Defaults to 0.
Comment: This tag can be used to add the file to the zip archive with a comment
attached to it.
Time: This tag can be used to change the file’s datestamp. By default, the dat-

estamp will be taken from the file specified in £$. If you'd like to assign a
different datestamp to the file, then you need to pass a string in the standard
Hollywood date format of dd-mmm-yyyy hh:mm:ss to this tag.

Note that this function doesn’t immediately begin compressing the file and writing it
to the zip archive. Instead, the file is just added into an internal list and compress-
ing and writing will be done once you call zip.CloseArchive(). This means that

Chapter 4: Function reference 11

you have to make sure that the file you specified in £$ is still available when you call
zip.CloseArchive(), i.e. in case you pass the name of a temporary file to £$ you must
not delete this temporary file before you call zip.CloseArchive().

INPUTS

id identifier of the zip archive to use

£$ path to a file to add to the zip archive

table optional: table containing further options (see above)
RESULTS

idx index of newly added file in zip archive

4.3 zip.CloseArchive

NAME

zip.CloseArchive — close zip archive
SYNOPSIS

zip.CloseArchive(id[, discard, callback, userdata])
FUNCTION

This function closes the specified zip archive. Note that if the zip archive has been
opened for writing, zip.CloseArchive () marks the point when compressing and writing
the data will actually happen. That’s why it can take some time for this function to
return.

If you want to discard all changes that have been made to the zip archive, you have to
pass True in the discard parameter. In that case, the original zip archive isn’t modified
and all changes are discarded. This is also what will happen to all zip archives which you
open using zip.0OpenArchive () but forget to close using zip.CloseArchive (). Changes
will only ever be written to the zip archive if you explicitly call zip.CloseArchive ()
with discard being False.

If you’d like to monitor the progress of compressing data and writing it to the zip archive,
you can pass a callback function in the second parameter. Optionally, it is also possible to
specify user data to pass to the callback function in their third argument. The userdata
parameter can take values of any type: Numbers, strings, tables, and even functions can
be passed as user data.

The status callback function receives a single table element that contains the following

fields:

Action: Initialized to "CloseArchive".
ID: Contains the identifier of the zip archive that is currently being worked on.
Progress:
Contains a value between 0 and 100 indicating how much work has already
been done.
UserData:

Contains the value you passed in the userdata argument.

12 Zip plugin manual

Obviously, if discard is set to True, the callback function will never be called.

INPUTS
id identifier of the zip archive to be closed

discard optional: True to discard all changes, False to write all changes to the zip
archive (defaults to False)

callback optional: function to call from time to time

userdata optional: user specific data to pass to callback function

4.4 zip.DeleteFile

NAME

zip.DeleteFile — delete file from zip archive
SYNOPSIS

zip.DeleteFile(id, idx)
FUNCTION

This function deletes the file at index idx in the zip archive specified by id.

Note that the change to the zip archive isn’t done immediately but is postponed until
you call zip.CloseArchive().

This function can also operate on directories. See Section 3.4 [Zip archive basics|, page 6,
for details.

INPUTS
id identifier of the zip archive to use
idx file to delete

4.5 zip.ExtractFile

NAME

zip.ExtractFile — extract file from zip archive
SYNOPSIS

zip.ExtractFile(id, idx, dst$[, tablel)
FUNCTION

This function can be used to extract the file at the index idx inside the zip archive
specified by id to the external file specified by dst$. If dst$ already exists, it will be
overwritten. An optional table argument allows you to specify further options for the
operation.

The following tags are currently recognized in the optional table argument:

Password:
If the file you wish to extract is protected by a password, you have to specify
this password here. If you don’t specify this tag, the default password set
using zip.SetDefaultPassword() is used.

Chapter 4: Function reference 13

Callback:

UserData:

INPUTS
id
idx
dst$
table

This tag allows you to pass a function that should be called from time to
time. This can be useful if you’d like to show a status bar or something
while the zip file is being extracted. The function will receive a table as its
sole argument. The table will have the following fields initialized:

Action: Initialized to "ExtractFile".
ID: Contains the identifier of the zip archive.
Progress:

Contains a value between 0 and 100 indicating how much work
has already been done.

UserData:
Contains the value you passed in the UserData argument (see

below).

You can also pass user data that should be forwarded to your callback using
the tag below.

This tag can be set to arbitrary data that should be passed to the callback
you passed in the Callback tag. If you specify this tag without the Callback
tag, it is simply ignored.

identifier of the zip archive to use
index of file to extract
desired destination file

optional: table containing further parameters

4.6 zip.GetFileAttributes

NAME

zip.GetFileAttributes — get file attributes

SYNOPSIS

t = zip.GetFileAttributes(id, idx)

FUNCTION

This function returns attributes of the file at the index specified by idx inside the zip
archive specified by id. zip.GetFileAttributes() returns a table with the following
information about the file:

Size:

The size of the file in bytes or 0 for directories.

CompressedSize:

CRC32:

The compressed size of the file in bytes or 0 for directories.

The CRC32 checksum of the file or 0 for directories.

14 Zip plugin manual

Compression:
The compression method used for the file. This will be one of the following
special constants:

#ZIP_CM_DEFAULT:
Default compression. Currently the same as #ZIP_CM_DEFLATE.

#ZIP_CM_STORE:
Store the file uncompressed.

#ZIP_CM_BZIP2:
Compress the file using the bzip2 algorithm.

#ZIP_CM_DEFLATE:
Deflate the file with the zlib algorithm and default options.

Encryption:
The encryption method used for the file. This will be one of the following
special constants:

#ZIP_EM_NONE:
No encryption.

#ZIP_EM_AES_128:
Winzip AES-128 encryption.

#ZIP_EM_AES_192:
Winzip AES-192 encryption.

#ZIP_EM_AES_256:
Winzip AES-256 encryption.

Time: The datestamp for the file. This will be in the standard Hollywood date
format of dd-mmm-yyyy hh:mm:ss.
INPUTS
id identifier of the zip archive to use
idx index of the file to query
RESULTS
t table containing file attributes

4.7 zip.GetFileComment

NAME

zip.GetFileComment — get file comment
SYNOPSIS

c$ = zip.GetFileComment (id[, idx])
FUNCTION

This function can be used to get the comment of a file inside the zip archive spec-
ified by id or of the whole zip archive. If the optional parameter idx is specified,

Chapter 4: Function reference 15

zip.GetFileComment () retrieves the comment of the file at that index. If the idx pa-
rameter is omitted or set to -1, the comment of the zip archive itself is returned.

This function can also operate on directories. See Section 3.4 [Zip archive basics], page 6,
for details.

INPUTS
id identifier of the zip archive to use
idx optional: index of file whose comment should be obtained; if this is omitted
or set to -1, the comment of the whole archive is returned (defaults to -1)
RESULTS
c$ file comment or empty string if there is no comment

4.8 zip.GetFileAtIndex

NAME

zip.GetFileAtIndex — get name of file by index
SYNOPSIS

name$ = zip.GetFileAtIndex(id, idx)
FUNCTION

This function returns the name of the file at index idx in the zip archive specified by
id. If the name returned by this function ends with a slash, it is a directory, otherwise
it is a file. See Section 3.4 [Zip archive basics], page 6, for details.

To find out the number of files in a zip archive, you can query #ZIPATTRNUMENTRIES with

Hollywood’s GetAttribute() function. See Section 4.9 [zip.GetObjectType|, page 15,
for details.

INPUTS

id identifier of the zip archive to use

idx index to query (in the range of 0 to number of entries minus 1)
RESULTS

name$ name of entry at index

4.9 zip.GetObjectType

NAME

zip.GetObjectType — get zip archive object type
SYNOPSIS

type = zip.GetObjectType()
FUNCTION

This function returns the object type used by zip archives opened using the
zip.0OpenArchive() function. You can then use this object type with functions

16 Zip plugin manual

from Hollywood’s object library such as GetAttribute(), SetObjectData(),
GetObjectData(), etc.

In particular, Hollywood’s GetAttribute () function may be used to query certain prop-
erties of zip archives opened using zip.OpenArchive(). The following attributes are
currently supported by GetAttribute() for zip archives:

#ZIPATTRNUMENTRIES:
Returns the number of entries in the zip archive.
INPUTS
none
RESULTS
type internal zip archive type for use with Hollywood’s object library
EXAMPLE

zip.0OpenArchive (1, "test.zip")
ZIP_ARCHIVE = zip.GetObjectType()
numentries = GetAttribute(ZIP_ARCHIVE, 1, #ZIPATTRNUMENTRIES)

The code above opens test.zip and queries the number of entries in the archive via
GetAttribute().

4.10 zip.LocateFile

NAME

zip.LocateFile — find file in zip archive
SYNOPSIS

idx = zip.LocateFile(id, name$[, table])
FUNCTION

This function searches for the file specified by name$ inside the zip archive specified by
id and returns its index if it is found, otherwise -1 is returned.

The optional table argument can be used to specify further options. The following table
tags are currently recognized:

NoCase: If this tag is set to True, zip.LocateFile () won’t distinguish between upper
and lower case characters. This makes the search slower. Defaults to False.

NoDir: If this tag is set to True, zip.LocateFile() will just match the file name
so it will also trigger if the file is in a subdirectory in the archive. Defaults
to False.

This function can also operate on directories. See Section 3.4 [Zip archive basics|, page 6,
for details.

INPUTS
id identifier of the zip archive to use
name$ name of the file to locate

table optional: table argument containing further options (see above)

Chapter 4: Function reference 17

RESULTS
idx index of file inside zip archive or -1 if it couldn’t be found

4.11 zip.OpenArchive

NAME

zip.OpenArchive — open a zip archive for reading or writing
SYNOPSIS

[id] = zip.OpenArchive(id, filename$[, mode])
FUNCTION

This function attempts to open the zip archive specified by filename$ and assigns id
to it. If you pass Nil in id, zip.OpenArchive() will automatically choose a vacant
identifier and return it. If the file does not exist, this function will fail unless you use
the mode argument to open a zip archive for writing. In that case, zip.0OpenArchive ()
will create the file for you.

The following modes are currently supported:

#MODE_READ:
Open the zip archive for reading. This is the default mode.

#MODE_READWRITE:
Open the zip archive for reading and writing. If the specified zip archive
doesn’t exist, it is automatically created.

#MODE_WRITE:
Open the zip archive for writing. If the specified zip archive already exists,
it will be overwritten.

Although zip.hwp will automatically close all open zip archives when it quits, it is
strongly advised that you close an open zip archive when you are done with it using
the zip.CloseArchive () function because otherwise you are wasting resources and in
case you are writing or modifying a zip archive, zip.CloseArchive () is where the actual
work is done.

Note that zip.OpenArchive() will create a standard Hollywood object which can
also be used with functions from Hollywood’s object library such as GetAttribute(),
SetObjectData(), GetObjectData(), etc. See Section 4.9 [zip.GetObjectType],
page 15, for details.

INPUTS
id identifier of the file or Nil for auto id selection

filename$
name of the file to open

mode mode to open the file; can be #MODE_READ, #MODE_WRITE or #MODE_
READWRITE (defaults to #MODE_READ)

RESULTS

id optional: identifier of the file; will only be returned when you pass Nil as
argument 1 (see above)

18 Zip plugin manual

4.12 zip.RenameFile

NAME

zip.RenameFile — rename file in zip archive

SYNOPSIS

zip.RenameFile(id, idx, newname$)

FUNCTION
This function renames the file at index idx in the zip archive specified by id to the name
passed in the newname$ parameter.

If you need to rename a directory entry, newname$ must end on a trailing slash character.
See Section 3.4 [Zip archive basics|, page 6, for details.

Note that the change to the zip archive isn’t done immediately but is postponed until
you call zip.CloseArchive().

INPUTS
id identifier of the zip archive to use
idx file to rename

newname$ new name for file

4.13 zip.SetDefaultPassword

NAME
zip.SetDefaultPassword — set default password

SYNOPSIS
zip.SetDefaultPassword(id, pwd$)

FUNCTION
This function can be used to set a default password that is used to encrypt and decrypt
files if no other password is provided. You need to pass the identifier of a zip archive in
id and a password in pwd$. If you pass an empty string in pwd$, the default password
is unset.

Functions that use the default password if no other password is explicitly specified are
zip.AddFile(), zip.ExtractFile(), and zip.SetFileEncryption().

INPUTS

id identifier of the zip archive to use

pwd$ new default password or empty string to unset the default password

Chapter 4: Function reference 19

4.14 zip.SetFileComment

NAME

zip.SetFileComment — set file comment
SYNOPSIS

zip.SetFileComment (id[, c$, idx])
FUNCTION

This function can be used to set the comment for a file inside the zip archive specified by
id or for the whole zip archive. If the optional parameter idx is specified, the comment
specified by c$ is set for the file at that index. If the optional parameter idx is omitted
or set to -1, the comment specified by c$ is set for the whole zip archive.

You can also remove the comment of a file or the whole archive by omitting the c$
argument or setting it to an empty string.

Note that the change to the zip archive isn’t done immediately but is postponed until
you call zip.CloseArchive().

This function can also operate on directories. See Section 3.4 [Zip archive basics], page 6,
for details.

INPUTS
id identifier of the zip archive to use
c$ optional: comment to set or empty string to remove a comment
idx optional: index of file whose comment should be set; if this is omitted or set

to -1, the comment is set for the whole archive (defaults to -1)

4.15 zip.SetFileCompression

NAME

zip.SetFileCompression — set file compression
SYNOPSIS

zip.SetFileCompression(id, idx, method[, flags])
FUNCTION

This function sets the compression method for the file at index idx in the zip archive
specified by id to the compression method specified in method. The optional flags
argument can be used to define the compression level, 1 being fastest compression and
9 highest. Allowed values are 1-9 or 0 to use the compressor’s default setting.

The method parameter must be one of the following constants:

#ZIP_CM_DEFAULT:
This is the default setting. Currently the same as #ZIP_CM_DEFLATE.

#ZIP_CM_STORE:
Store the file uncompressed.

#ZIP_CM_BZIP2:
Compress the file using the bzip2 algorithm.

20 Zip plugin manual

#ZIP_CM_DEFLATE:
Deflate the file with the zlib algorithm and default options.

Note that only #ZIP_CM_DEFLATE and #ZIP_CM_STORE can be assumed to be universally
supported.

Also note that the change to the zip archive isn’t done immediately but is postponed
until you call zip.CloseArchive().

INPUTS
id identifier of the zip archive to use
idx index of file whose compression should be set
method desired compression method (see above)
flags optional: desired compression level ranging from 1 (fastest) to 9 (highest) or

0 for the compressor’s default setting (defaults to 0)

4.16 zip.SetFileEncryption

NAME

zip.SetFileEncryption — set file encryption
SYNOPSIS

zip.SetFileEncryption(id, idx, method[, pwd$])
FUNCTION

This function sets the encryption method for the file at index idx in the zip archive
specified by id. The desired encryption method has to be passed in the method
parameter. Optionally, you can specify a password in the pwd$ argument. If the
pwd$ argument is omitted or set to an empty string, the default password set using
zip.SetDefaultPassword () is used.

The method parameter must be one of the following constants:

#ZIP_EM_NONE:
No encryption.

#ZIP_EM_AES_128:
Winzip AES-128 encryption.

#ZIP_EM_AES_192:
Winzip AES-192 encryption.

#ZIP_EM_AES_256:
Winzip AES-256 encryption.

Note that the change to the zip archive isn’t done immediately but is postponed until
you call zip.CloseArchive().

INPUTS

id identifier of the zip archive to use

idx index of file whose encryption should be set

Chapter 4: Function reference 21

method desired encryption method (see above)

pwd$ optional: desired password for file or empty string to use the default password
(defaults to the empty string)

4.17 zip.SetFileTime

NAME

zip.SetFileTime — set file datestamp
SYNOPSIS

zip.SetFileTime(id, idx, time$)
FUNCTION

This function sets the datestamp for the file at index idx in the zip archive specified by
id. The datestamp must be passed in the standard Hollywood date format of dd-mmm-
yyyy hh:mm:ss.

Note that the change to the zip archive isn’t done immediately but is postponed until
you call zip.CloseArchive().

INPUTS
id identifier of the zip archive to use
idx index of file whose datestamp should be changed

time$ desired datestamp

23

Appendix A Licenses

A.1 LibZip license

Copyright (C) 1999-2016 Dieter Baron and Thomas Klausner
The authors can be contacted at <libzip@nih.at>

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. The names of the authors may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS AS IS AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

A.2 AES encryption support

Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
The free distribution and use of this software in both source and binary form is allowed
(with or without changes) provided that:
1. distributions of this source code include the above copyright notice, this list of condi-
tions and the following disclaimer;
2. distributions in binary form include the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other associated materials;
3. the copyright holder’s name is not used to endorse products built using this software
without specific written permission.

ALTERNATIVELY, provided that this notice is retained in full, this product may be dis-
tributed under the terms of the GNU General Public License (GPL), in which case the
provisions of the GPL apply INSTEAD OF those given above.

DISCLAIMER: This software is provided ’as is’ with no explicit or implied warranties in
respect of its properties, including, but not limited to, correctness and/or fitness for purpose.

Issue Date: 18th November 2008

25

Index

zip.AddDirectory ... 9 zip.LocateFile, 16
zip.AddFile................ooiii 9 zip.OpenArchive ool 17
Z}p.CloseArc.:hlve """"""""""""""" 11 zip.RenameFileooiiiiiiinanininnnnn. 18
Z1p- getetei;}i """""""""""""""" g zip.SetDefaultPassword...................... 18
zip.ExtractFile] .

2ip. GEtFAleAtIOACK . . v everreeeseeenn 15 zip.SetFileComment........................... 18
zip.GetFileAttributes 13 zip.SetFileCompression...................... 19
zip.GetFileComment...........c.ovvvuennennn... 14 zip.SetFileEncryption....................... 20
zip.GetObjectType..................oiit.t. 15 zip.SetFileTime 21

	General information
	Introduction
	Terms and conditions
	Requirements
	Installation

	About zip.hwp
	Credits
	Frequently asked questions
	Known issues
	Future
	History

	Usage
	Activating the plugin
	Zip archives as directories
	Extracting files
	Zip archive basics
	Creating zip archives
	Linking files

	Function reference
	zip.AddDirectory
	zip.AddFile
	zip.CloseArchive
	zip.DeleteFile
	zip.ExtractFile
	zip.GetFileAttributes
	zip.GetFileComment
	zip.GetFileAtIndex
	zip.GetObjectType
	zip.LocateFile
	zip.OpenArchive
	zip.RenameFile
	zip.SetDefaultPassword
	zip.SetFileComment
	zip.SetFileCompression
	zip.SetFileEncryption
	zip.SetFileTime

	Licenses
	LibZip license
	AES encryption support

	Index

