
RapaGUI 2.1
Rapid Cross-Platform GUI Development On All Islands

Andreas Falkenhahn

i

Table of Contents

1 General information . 1
1.1 Introduction . 1
1.2 Terms and conditions . 1
1.3 Requirements . 2

2 About RapaGUI . 5
2.1 History . 5
2.2 Compatibility notes . 5
2.3 Future . 6
2.4 Frequently asked questions . 6
2.5 Credits . 7

3 Conceptual overview . 9
3.1 Application tree . 9
3.2 GUI layout . 9
3.3 Running GUIs . 10
3.4 Initializing RapaGUI . 11
3.5 Object handling . 12
3.6 Event handling . 12
3.7 Attribute notifications . 13
3.8 Dynamic objects . 15
3.9 Sizeability . 16
3.10 Applicability . 19
3.11 Device-independent pixels . 19
3.12 High-DPI support . 20
3.13 Keyboard shortcuts . 21
3.14 Text formatting codes . 22
3.15 Implementing help texts . 23
3.16 Context menus . 24
3.17 Internationalization . 24
3.18 Character encoding . 25
3.19 Hollywood bridge . 26
3.20 Image cache . 30
3.21 Platform-dependent features . 31
3.22 MUI Royale compatibility . 31

4 Tutorial . 35
4.1 Tutorial . 35

5 Examples . 43
5.1 Examples . 43

ii RapaGUI manual

6 Function reference . 45
6.1 moai.CreateApp . 45
6.2 moai.CreateDialog . 46
6.3 moai.CreateObject . 47
6.4 moai.DoMethod . 49
6.5 moai.FreeApp . 50
6.6 moai.FreeDialog . 50
6.7 moai.FreeImage . 50
6.8 moai.FreeObject . 51
6.9 moai.Get . 52
6.10 moai.HaveObject . 52
6.11 moai.Notify . 53
6.12 moai.Request . 53
6.13 moai.Set . 54
6.14 moai.UpdateImage . 55

7 Accelerator class . 57
7.1 Overview . 57

8 Acceleratoritem class . 59
8.1 Overview . 59
8.2 Acceleratoritem.Mod . 60
8.3 Acceleratoritem.Pressed . 60

9 Application class . 61
9.1 Overview . 61
9.2 Application.AboutMUI . 61
9.3 Application.AboutRapaGUI . 61
9.4 Application.AddWindow . 61
9.5 Application.ContextMenu . 62
9.6 Application.HelpFile . 62
9.7 Application.Icon . 63
9.8 Application.OpenConfigWindow . 63
9.9 Application.RemoveWindow . 64
9.10 Application.Sleep . 64
9.11 Application.ShowHelp . 64
9.12 Application.ShowHelpNode . 65
9.13 Application.UseIcons . 65
9.14 Application.WindowMenu . 66

iii

10 Area class . 67
10.1 Overview . 67
10.2 Area.ContextMenu . 67
10.3 Area.Disabled . 68
10.4 Area.FixHeight . 68
10.5 Area.FixWidth . 69
10.6 Area.FontName . 69
10.7 Area.FontSize . 69
10.8 Area.FontStyle . 70
10.9 Area.Height . 70
10.10 Area.Hide . 71
10.11 Area.Left . 71
10.12 Area.NoAutoKey . 71
10.13 Area.Redraw . 72
10.14 Area.Tooltip . 72
10.15 Area.Top . 72
10.16 Area.Weight . 73
10.17 Area.Width . 73

11 Busybar class . 75
11.1 Overview . 75
11.2 Busybar.Move . 75
11.3 Busybar.Reset . 75

12 Button class . 77
12.1 Overview . 77
12.2 Button.Hint . 77
12.3 Button.Icon . 77
12.4 Button.IconPos . 78
12.5 Button.IconScale . 78
12.6 Button.IconType . 79
12.7 Button.Pressed . 79
12.8 Button.Selected . 80
12.9 Button.Text . 80
12.10 Button.Toggle . 80

13 Checkbox class . 83
13.1 Overview . 83
13.2 Checkbox.Right . 83
13.3 Checkbox.Selected . 83

iv RapaGUI manual

14 Choice class . 85
14.1 Overview . 85
14.2 Choice.Active . 85
14.3 Choice.Clear . 85
14.4 Choice.Count . 86
14.5 Choice.GetEntry . 86
14.6 Choice.Insert . 86
14.7 Choice.Remove . 87
14.8 Choice.Rename . 88

15 Combobox class . 89
15.1 Overview . 89
15.2 Combobox.Acknowledge . 89
15.3 Combobox.Clear . 89
15.4 Combobox.Close . 90
15.5 Combobox.Count . 90
15.6 Combobox.GetEntry . 90
15.7 Combobox.Insert . 91
15.8 Combobox.Open . 91
15.9 Combobox.Popup . 92
15.10 Combobox.Remove . 92
15.11 Combobox.Rename . 92
15.12 Combobox.Selected . 93
15.13 Combobox.Value . 93

16 Dialog class . 95
16.1 Overview . 95
16.2 Dialog.EndModal . 96
16.3 Dialog.ShowModal . 96

17 Finddialog class . 99
17.1 Overview . 99
17.2 Finddialog.Down . 99
17.3 Finddialog.Find . 99
17.4 Finddialog.FindNext . 100
17.5 Finddialog.FindString . 100
17.6 Finddialog.MatchCase . 100
17.7 Finddialog.NoMatchCase . 100
17.8 Finddialog.NoUpDown . 101
17.9 Finddialog.NoWholeWord . 101
17.10 Finddialog.Replace . 101
17.11 Finddialog.ReplaceAll . 102
17.12 Finddialog.ReplaceMode . 102
17.13 Finddialog.ReplaceString . 102
17.14 Finddialog.WholeWord . 102

v

18 Group class . 105
18.1 Overview . 105
18.2 Group.Append . 106
18.3 Group.Color . 106
18.4 Group.Columns . 107
18.5 Group.ExitChange . 107
18.6 Group.Frame . 108
18.7 Group.FrameTitle . 108
18.8 Group.HAlign . 108
18.9 Group.Hide . 109
18.10 Group.HorizSpacing . 109
18.11 Group.Icon . 109
18.12 Group.IconScale . 110
18.13 Group.IconType . 110
18.14 Group.InitChange . 111
18.15 Group.Insert . 111
18.16 Group.Padding . 112
18.17 Group.Paint . 112
18.18 Group.Prepend . 114
18.19 Group.Remove . 114
18.20 Group.SameSize . 115
18.21 Group.Spacing . 115
18.22 Group.Title . 116
18.23 Group.VAlign . 116
18.24 Group.VertSpacing . 116
18.25 Group.Weight . 117

19 HLine class . 119
19.1 Overview . 119

20 Hollywood class . 121
20.1 Overview . 121
20.2 Hollywood.Display . 121
20.3 Hollywood.DropFile . 122
20.4 Hollywood.DropTarget . 122

21 HSpace class . 123
21.1 Overview . 123
21.2 HSpace.Width . 123

vi RapaGUI manual

22 HSplitter class . 125
22.1 Overview . 125
22.2 HSplitter.Border . 125
22.3 HSplitter.Gravity . 125
22.4 HSplitter.MinPaneSize . 126
22.5 HSplitter.Position . 126
22.6 HSplitter.Split . 126
22.7 HSplitter.Unsplit . 127

23 HTMLview class . 129
23.1 Overview . 129
23.2 HTMLview.CanGoBack . 129
23.3 HTMLview.CanGoForward . 129
23.4 HTMLview.ClearHistory . 130
23.5 HTMLview.Contents . 130
23.6 HTMLview.File . 130
23.7 HTMLview.GoBack . 131
23.8 HTMLview.GoForward . 131
23.9 HTMLview.Reload . 131
23.10 HTMLview.Search . 131
23.11 HTMLview.Title . 132
23.12 HTMLview.URL . 132

24 Hyperlink class . 133
24.1 Overview . 133
24.2 Hyperlink.Label . 133
24.3 Hyperlink.URL . 133

25 Image class . 135
25.1 Overview . 135
25.2 Image.Brush . 135
25.3 Image.BrushScale . 135
25.4 Image.BrushType . 136

26 Label class . 137
26.1 Overview . 137
26.2 Label.Align . 137
26.3 Label.Text . 137

vii

27 Listview class . 139
27.1 Overview . 139
27.2 Listview.AbortEditing . 140
27.3 Listview.Active . 140
27.4 Listview.Alternate . 141
27.5 Listview.Clear . 141
27.6 Listview.ClickColumn . 142
27.7 Listview.Columns . 142
27.8 Listview.CompareItems . 142
27.9 Listview.DefClickColumn . 143
27.10 Listview.DoubleClick . 143
27.11 Listview.DropFile . 143
27.12 Listview.DropTarget . 144
27.13 Listview.Edit . 144
27.14 Listview.Entries . 145
27.15 Listview.Exchange . 145
27.16 Listview.First . 146
27.17 Listview.ForceMode . 146
27.18 Listview.GetColumnID . 147
27.19 Listview.GetDisabled . 147
27.20 Listview.GetEntry . 148
27.21 Listview.GetSelection . 148
27.22 Listview.GetState . 149
27.23 Listview.HRules . 149
27.24 Listview.Insert . 149
27.25 Listview.InsertColumn . 151
27.26 Listview.ItemStyle . 152
27.27 Listview.Jump . 152
27.28 Listview.LongClick . 153
27.29 Listview.Move . 153
27.30 Listview.MultiSelect . 154
27.31 Listview.Quiet . 154
27.32 Listview.Remove . 154
27.33 Listview.RemoveColumn . 155
27.34 Listview.Rename . 155
27.35 Listview.RowHeight . 156
27.36 Listview.Select . 157
27.37 Listview.SetDisabled . 157
27.38 Listview.SetState . 158
27.39 Listview.Sort . 158
27.40 Listview.SortColumn . 158
27.41 Listview.StartEditing . 159
27.42 Listview.SystemTheme . 159
27.43 Listview.TitleClick . 160
27.44 Listview.ValueChange . 160
27.45 Listview.Visible . 160
27.46 Listview.VRules . 161

viii RapaGUI manual

28 Listviewcolumn class . 163
28.1 Overview . 163
28.2 Listviewcolumn.Align . 163
28.3 Listviewcolumn.Checkbox . 163
28.4 Listviewcolumn.Editable . 164
28.5 Listviewcolumn.Hide . 164
28.6 Listviewcolumn.Icon . 165
28.7 Listviewcolumn.IconScale . 165
28.8 Listviewcolumn.IconType . 166
28.9 Listviewcolumn.Sortable . 167
28.10 Listviewcolumn.SortOrder . 167
28.11 Listviewcolumn.Title . 167
28.12 Listviewcolumn.Width . 168

29 Listviewitem class . 169
29.1 Overview . 169
29.2 Listviewitem.Icon . 169

30 Menu class . 171
30.1 Overview . 171
30.2 Menu.Append . 171
30.3 Menu.Disabled . 172
30.4 Menu.Insert . 172
30.5 Menu.NoAutoKey . 172
30.6 Menu.Prepend . 173
30.7 Menu.Remove . 173
30.8 Menu.Title . 174
30.9 Menu.Type . 174

31 Menubar class . 175
31.1 Overview . 175
31.2 Menubar.Append . 176
31.3 Menubar.Insert . 176
31.4 Menubar.Prepend . 177
31.5 Menubar.Remove . 177

32 Menuitem class . 179
32.1 Overview . 179
32.2 Menuitem.Disabled . 179
32.3 Menuitem.Help . 179
32.4 Menuitem.NoAutoKey . 180
32.5 Menuitem.Selected . 180
32.6 Menuitem.Shortcut . 180
32.7 Menuitem.Title . 182
32.8 Menuitem.Type . 183

ix

33 MOAI class . 185
33.1 Overview . 185
33.2 MOAI.Class . 185
33.3 MOAI.I18N . 185
33.4 MOAI.ID . 185
33.5 MOAI.NoNotify . 186
33.6 MOAI.Notify . 186
33.7 MOAI.NotifyData . 187
33.8 MOAI.UserData . 187

34 Pageview class . 189
34.1 Overview . 189
34.2 Pageview.Active . 189
34.3 Pageview.Append . 190
34.4 Pageview.GetPageID . 190
34.5 Pageview.Insert . 191
34.6 Pageview.Mode . 191
34.7 Pageview.Multiline . 192
34.8 Pageview.Pages . 192
34.9 Pageview.PlainBG . 193
34.10 Pageview.Position . 193
34.11 Pageview.Prepend . 193
34.12 Pageview.Remove . 194

35 Popcolor class . 195
35.1 Overview . 195
35.2 Popcolor.RGB . 195
35.3 Popcolor.Title . 195

36 Popfile class . 197
36.1 Overview . 197
36.2 Popfile.File . 197
36.3 Popfile.Pattern . 197
36.4 Popfile.SaveMode . 198
36.5 Popfile.Title . 198

37 Popfont class . 199
37.1 Overview . 199
37.2 Popfont.Font . 199
37.3 Popfont.MaxSize . 199
37.4 Popfont.MinSize . 199
37.5 Popfont.Title . 200

x RapaGUI manual

38 Poppath class . 201
38.1 Overview . 201
38.2 Poppath.Path . 201
38.3 Poppath.Title . 201

39 Progressbar class . 203
39.1 Overview . 203
39.2 Progressbar.Horiz . 203
39.3 Progressbar.Level . 203
39.4 Progressbar.Max . 203

40 Radio class . 205
40.1 Overview . 205
40.2 Radio.Active . 205
40.3 Radio.Columns . 205
40.4 Radio.GetItem . 206
40.5 Radio.SetItem . 206
40.6 Radio.Title . 207

41 Rectangle class . 209
41.1 Overview . 209

42 Scrollbar class . 211
42.1 Overview . 211
42.2 Scrollbar.AutoScale . 211
42.3 Scrollbar.Horiz . 211
42.4 Scrollbar.Level . 212
42.5 Scrollbar.Range . 212
42.6 Scrollbar.StepSize . 212
42.7 Scrollbar.Target . 213
42.8 Scrollbar.UseWinBorder . 213
42.9 Scrollbar.Visible . 214

43 Scrollcanvas class . 215
43.1 Overview . 215
43.2 Scrollcanvas.AutoBars . 215
43.3 Scrollcanvas.AutoScale . 216
43.4 Scrollcanvas.Paint . 216
43.5 Scrollcanvas.Scroll . 217
43.6 Scrollcanvas.StepSize . 218
43.7 Scrollcanvas.UseLeftBorder . 218
43.8 Scrollcanvas.UseWinBorder . 218
43.9 Scrollcanvas.VirtHeight . 219
43.10 Scrollcanvas.VirtWidth . 219

xi

44 Scrollgroup class . 221
44.1 Overview . 221
44.2 Scrollgroup.AutoBars . 221
44.3 Scrollgroup.Horiz . 221
44.4 Scrollgroup.UseWinBorder . 222

45 Slider class . 223
45.1 Overview . 223
45.2 Slider.Drag . 223
45.3 Slider.Horiz . 223
45.4 Slider.Level . 224
45.5 Slider.Max . 224
45.6 Slider.Min . 224
45.7 Slider.Quiet . 225
45.8 Slider.Release . 225
45.9 Slider.Reverse . 225
45.10 Slider.StepSize . 225

46 Statusbar class . 227
46.1 Overview . 227

47 Statusbaritem class . 229
47.1 Overview . 229
47.2 Statusbaritem.Text . 229
47.3 Statusbaritem.Width . 229

48 Text class . 231
48.1 Overview . 231
48.2 Text.Align . 231
48.3 Text.Frame . 231
48.4 Text.Text . 232

49 Texteditor class . 233
49.1 Overview . 233
49.2 Texteditor.Align . 233
49.3 Texteditor.AreaMarked . 233
49.4 Texteditor.Bold . 234
49.5 Texteditor.Clear . 234
49.6 Texteditor.Color . 235
49.7 Texteditor.Copy . 235
49.8 Texteditor.CursorPos . 235
49.9 Texteditor.Cut . 236
49.10 Texteditor.GetLineLength . 236
49.11 Texteditor.GetPosition . 236
49.12 Texteditor.GetSelection . 237
49.13 Texteditor.GetText . 237

xii RapaGUI manual

49.14 Texteditor.GetXY . 238
49.15 Texteditor.HasChanged . 238
49.16 Texteditor.Hint . 238
49.17 Texteditor.Insert . 239
49.18 Texteditor.Italic . 239
49.19 Texteditor.Mark . 240
49.20 Texteditor.MarkAll . 240
49.21 Texteditor.MarkNone . 240
49.22 Texteditor.NoWrap . 241
49.23 Texteditor.Paste . 241
49.24 Texteditor.ReadOnly . 241
49.25 Texteditor.Redo . 242
49.26 Texteditor.RedoAvailable . 242
49.27 Texteditor.ScrollToLine . 242
49.28 Texteditor.SetBold . 243
49.29 Texteditor.SetColor . 243
49.30 Texteditor.SetItalic . 244
49.31 Texteditor.SetUnderline . 244
49.32 Texteditor.Styled . 245
49.33 Texteditor.Text . 245
49.34 Texteditor.Underline . 245
49.35 Texteditor.Undo . 246
49.36 Texteditor.UndoAvailable . 246

50 Textentry class . 247
50.1 Overview . 247
50.2 Textentry.Accept . 247
50.3 Textentry.Acknowledge . 247
50.4 Textentry.AdvanceOnCR . 248
50.5 Textentry.Copy . 248
50.6 Textentry.CursorPos . 248
50.7 Textentry.Cut . 249
50.8 Textentry.GetSelection . 249
50.9 Textentry.Hint . 249
50.10 Textentry.Insert . 250
50.11 Textentry.Mark . 250
50.12 Textentry.MarkAll . 250
50.13 Textentry.MarkNone . 251
50.14 Textentry.MaxLen . 251
50.15 Textentry.Password . 251
50.16 Textentry.Paste . 251
50.17 Textentry.ReadOnly . 252
50.18 Textentry.Redo . 252
50.19 Textentry.Reject . 252
50.20 Textentry.Text . 253
50.21 Textentry.Undo . 253

xiii

51 Textview class . 255
51.1 Overview . 255
51.2 Textview.Align . 255
51.3 Textview.Append . 255
51.4 Textview.Styled . 256
51.5 Textview.Text . 256

52 Toolbar class . 257
52.1 Overview . 257
52.2 Toolbar.Horiz . 257
52.3 Toolbar.ViewMode . 258

53 Toolbarbutton class . 259
53.1 Overview . 259
53.2 Toolbarbutton.Disabled . 259
53.3 Toolbarbutton.Help . 259
53.4 Toolbarbutton.Icon . 260
53.5 Toolbarbutton.IconScale . 260
53.6 Toolbarbutton.IconType . 260
53.7 Toolbarbutton.Pressed . 261
53.8 Toolbarbutton.Selected . 261
53.9 Toolbarbutton.Tooltip . 262
53.10 Toolbarbutton.Type . 262

54 Treeview class . 263
54.1 Overview . 263
54.2 Treeview.AbortEditing . 264
54.3 Treeview.Active . 265
54.4 Treeview.Alternate . 265
54.5 Treeview.Clear . 266
54.6 Treeview.ClickColumn . 266
54.7 Treeview.Close . 266
54.8 Treeview.DoubleClick . 267
54.9 Treeview.DropFile . 267
54.10 Treeview.DropTarget . 267
54.11 Treeview.EditableNodes . 268
54.12 Treeview.ForceMode . 268
54.13 Treeview.GetEntry . 269
54.14 Treeview.HRules . 271
54.15 Treeview.InsertLeaf . 271
54.16 Treeview.InsertNode . 272
54.17 Treeview.Open . 273
54.18 Treeview.Remove . 274
54.19 Treeview.StartEditing . 274
54.20 Treeview.ValueChange . 275
54.21 Treeview.VRules . 275

xiv RapaGUI manual

55 Treeviewcolumn class . 277
55.1 Overview . 277
55.2 Treeviewcolumn.Align . 277
55.3 Treeviewcolumn.Checkbox . 277
55.4 Treeviewcolumn.Editable . 278
55.5 Treeviewcolumn.Hide . 279
55.6 Treeviewcolumn.Icon . 279
55.7 Treeviewcolumn.IconScale . 280
55.8 Treeviewcolumn.IconType . 280
55.9 Treeviewcolumn.Title . 281
55.10 Treeviewcolumn.Width . 281

56 Treeviewleaf class . 283
56.1 Overview . 283
56.2 Treeviewleaf.Edit . 283
56.3 Treeviewleaf.GetDisabled . 284
56.4 Treeviewleaf.GetIcon . 284
56.5 Treeviewleaf.GetItem . 284
56.6 Treeviewleaf.GetState . 285
56.7 Treeviewleaf.SetDisabled . 285
56.8 Treeviewleaf.SetIcon . 286
56.9 Treeviewleaf.SetItem . 286
56.10 Treeviewleaf.SetState . 286
56.11 Treeviewleaf.UID . 287

57 Treeviewleafitem class . 289
57.1 Overview . 289
57.2 Treeviewleafitem.Icon . 289

58 Treeviewnode class . 291
58.1 Overview . 291
58.2 Treeviewnode.Edit . 291
58.3 Treeviewnode.Icon . 291
58.4 Treeviewnode.Name . 292
58.5 Treeviewnode.UID . 292

59 VLine class . 293
59.1 Overview . 293

60 VSpace class . 295
60.1 Overview . 295
60.2 VSpace.Height . 295

xv

61 VSplitter class . 297
61.1 Overview . 297
61.2 VSplitter.Border . 297
61.3 VSplitter.Gravity . 297
61.4 VSplitter.MinPaneSize . 298
61.5 VSplitter.Position . 298
61.6 VSplitter.Split . 298
61.7 VSplitter.Unsplit . 299

62 Window class . 301
62.1 Overview . 301
62.2 Window.Accelerator . 301
62.3 Window.Activate . 302
62.4 Window.ActiveObject . 302
62.5 Window.Borderless . 302
62.6 Window.CloseGadget . 303
62.7 Window.CloseRequest . 303
62.8 Window.DefaultObject . 303
62.9 Window.DragBar . 304
62.10 Window.Height . 304
62.11 Window.HideFromTaskbar . 304
62.12 Window.Left . 305
62.13 Window.Margin . 305
62.14 Window.MaximizeGadget . 305
62.15 Window.Menubar . 306
62.16 Window.MinimizeGadget . 306
62.17 Window.NoCyclerMenu . 306
62.18 Window.Open . 307
62.19 Window.Orientation . 307
62.20 Window.Parent . 308
62.21 Window.PubScreen . 308
62.22 Window.Remember . 309
62.23 Window.ScreenTitle . 309
62.24 Window.SingleMenu . 309
62.25 Window.SizeChange . 310
62.26 Window.SizeGadget . 310
62.27 Window.StayOnTop . 310
62.28 Window.Subtitle . 311
62.29 Window.Toolwindow . 311
62.30 Window.Top . 311
62.31 Window.UseBottomBorderScroller . 312
62.32 Window.UseLeftBorderScroller . 312
62.33 Window.UseRightBorderScroller . 313
62.34 Window.Title . 313
62.35 Window.Width . 313

xvi RapaGUI manual

Appendix A Licenses . 315
A.1 wxWidgets license . 315
A.2 MUI license . 315
A.3 Expat license . 316
A.4 LGPL license . 316

Index . 325

1

1 General information

1.1 Introduction

RapaGUI is a plugin for Hollywood that allows you to easily create GUIs with Hollywood.
You just have to define the GUI layout in an XML file which is converted into a full-blown
GUI by RapaGUI on the fly. It just doesn’t get any easier!

RapaGUI’s premium feature is definitely its cross-platform design. Like Hollywood, Ra-
paGUI was designed as a platform-independent program. Therefore, it runs on a wide
variety of platforms, but still, it uses OS-native widgets on all supported platforms to give
your applications a truly authentic look and feel. Currently, RapaGUI is available in native
versions for Windows, Linux (GTK2/GTK3), macOS, AmigaOS, MorphOS, AROS, and
even for Android. With RapaGUI you just have to write your application once and it will
automatically run on many other platforms too! This allows you to spend your time on the
really important things, i.e. program design, instead of having to write backends for lots of
different platforms.

RapaGUI uses an object-oriented design composed of over 40 MOAI (Magic Omnigui Ar-
chitecture Interface) classes. Those MOAI classes constitute the heart of RapaGUI. All
GUI elements supported by RapaGUI (windows, widgets, menu bars...) are simply ob-
jects derived from those MOAI classes. By wrapping the diverse native OS GUI APIs into
platform-independent MOAI classes, those classes reduce the many faces of the different
OS GUI APIs into just a single MOAI API face, carved in stone by RapaGUI!

RapaGUI supports all the widgets you need to create modern GUI applications, including
multi-column listviews, treeviews, tabbed page widgets, toolbars, text editor widgets, menu
bars, HTML views and much more. The highlight of RapaGUI, however, is certainly its
inbuilt Hollywood MOAI class. This class allows dynamic embedding of complete Holly-
wood displays into GUIs which can be used to combine Hollywood’s powerful multimedia
functionality with RapaGUI’s GUI abilities into one powerful application.

RapaGUI comes with extensive documentation in various formats like PDF, HTML, Ami-
gaGuide, and CHM that describes the GUI programming basics in detail and provides
a convenient MOAI function and class reference. A step-by-step tutorial that guides you
through your first RapaGUI program is also included. On top of that, many example scripts
are included in the distribution archive, including advanced scripts like a complete video
player which really show off the power of Hollywood and RapaGUI working together.

All this makes RapaGUI the ultimate cross-platform GUI toolkit, carefully crafted for you
sailors of the seven GUI seas! Only RapaGUI allows rapid cross-platform GUI development
on all islands - it is the ultimate fusion of all the different OS GUI toolkits into one MOAI
face, carved in stone for eternity and beyond.

1.2 Terms and conditions

RapaGUI is c© Copyright 2015-2021 by Andreas Falkenhahn (in the following referred to
as "the author"). All rights reserved.

The program is provided "as-is" and the author cannot be made responsible of any possible
harm done by it. You are using this program absolutely at your own risk. No warranties
are implied or given by the author.

2 RapaGUI manual

This plugin may be freely distributed as long as the following three conditions are met:

1. No modifications must be made to the plugin.

2. It is not allowed to sell this plugin.

3. If you want to put this plugin on a coverdisc, you need to ask for permission first.

This software uses wxWidgets Copyright (C) 1998-2005 Julian Smart, Robert Roebling et
al. See Section A.1 [wxWidgets license], page 315, for details.

This software uses the Magic User Interface (MUI) which is Copyright (C) 1992-97 by Stefan
Stuntz. See Section A.2 [MUI license], page 315, for details.

This software uses Expat Copyright (C) 1998, 1999, 2000 Thai Open Source Software Center
Ltd and Clark Cooper. Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006 Expat maintainers.
See Section A.3 [Expat license], page 316, for details.

This program uses TextEditor.mcc by Allan Odgaard and the TextEditor.mcc Open Source
Team. See Section A.4 [LGPL license], page 316, for details.

This program uses HTMLview.mcc by Allan Odgaard and the HTMLview.mcc Open Source
Team. See Section A.4 [LGPL license], page 316, for details.

This program uses TheBar.mcc by Alfonso Ranieri and the TheBar.mcc Open Source Team.
See Section A.4 [LGPL license], page 316, for details.

This program uses codesets.library by Alfonso Ranieri and the codesets.library Open Source
Team. See Section A.4 [LGPL license], page 316, for details.

All trademarks are the property of their respective owners.

DISCLAIMER: THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDER AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BE-
ING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PAR-
TIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

1.3 Requirements

RapaGUI requires at least Hollywood 9.0. Depending on the platform there are the following
additional requirements:

Chapter 1: General information 3

Windows version:

− requires at least Windows XP

macOS version:

− Intel Macs: requires at least macOS 10.10

− PowerPC Macs: requires at least macOS 10.5

Linux version:

− requires GTK+ 2 or GTK+ 3, depending on which version of RapaGUI you use (for
most architectures, RapaGUI is available in a build for GTK+ 2 and GTK+ 3)

− optional: WebKitGTK+ is needed for HTMLview class

AmigaOS version:

− requires MUI 3.8 or better; using MUI 4 (or better) is highly recommended, though!

− 68020+ or PowerPC processor

− CyberGraphX or Picasso96

− codesets.library for UTF-8 support

− Toolbar class requires TheBar.mcc

− Texteditor class requires TextEditor.mcc

− HTMLview class requires HTMLview.mcc

5

2 About RapaGUI

2.1 History

Please see the file history.txt for a complete change log of RapaGUI.

2.2 Compatibility notes

RapaGUI 2.0 API changes

Unfortunately, it was necessary to make a few design changes in RapaGUI 2.0. This might
require some adaptations in your scripts to make them compatible with RapaGUI 2.0.
Please read through the following notes to learn if your script is affected.

− Events are now always handled when they occur. For example, let’s assume you have
installed a notification on the Radio.Active attribute and then you do something like
this:

moai.Set("radio", "active", 5) ; triggers event callback!

p_DoSomething()

With RapaGUI 1.x, the event handler function for Radio.Active wouldn’t be called
before the next call to WaitEvent(), i.e. p_DoSomething() would always be called
before the event handler for Radio.Active got called. In RapaGUI 2.0 this is different
now. The event handler will always be called right when the event occurs. This means
that p_DoSomething() will be called after the event handler for Radio.Active because
the call to moai.Set() will force the event handler to be run immediately after changing
the active radio item.

− WaitEvent() will never return. On most platforms, a call to WaitEvent() will be
a one-way ticket that starts your application’s main event loop and never returns.
Only on AmigaOS and compatibles does WaitEvent() still return from time to time
but you shouldn’t rely on this behaviour because on other platforms it behaves differ-
ently. If you want WaitEvent() to run custom callbacks, just use Hollywood 9.0’s new
RunCallback() function.

− All RapaGUI projects must use WaitEvent() now. It’s no longer acceptable to imple-
ment custom event handling using CheckEvent() or CheckEvents(). Routing normal
Hollywood scripts through RapaGUI will only work if they use WaitEvent() too.

− Dialog.ShowModal no longer supports dialog functions. If you want to open a dialog
that doesn’t block your script, you now have to set Window.Open to True for the dialog
(and possibly set Application.Sleep to True too) and then you can implement the
dialog’s actual behaviour by repeatedly calling a management function either using
SetTimeout() or Hollywood 9.0’s new RunCallback() function. Take a look at the
updated Dialogs example for a reference implementation of a non-blocking dialog that
uses this technique (choose "Test progress bar dialog" from the menu).

− Since modal event loops are no longer supported by RapaGUI, the plugin now
disables all Hollywood functions which attempt to start a modal event loop, e.g.
WaitLeftMouse(), WaitSampleEnd(), InKeyStr(), etc. These can’t be used together
with RapaGUI any longer.

6 RapaGUI manual

− RapaGUI requires Hollywood 9 now. RapaGUI 2.0 uses many interfaces only available
in Hollywood 9 so you cannot use it with older Hollywood versions any longer.

− When setting Texteditor.Text, RapaGUI will no longer trigger a
Texteditor.HasChanged notification. Instead, Texteditor.HasChanged will
just be set to False without triggering any event.

− Toolbar.ViewMode no longer defaults to TextGfx but to Gfx.

− When a listview has sortable columns, all items will always be sorted now. It is no
longer possible to insert entries at arbitrary positions in a listview that has sortable
columns. Instead, the entries are always sorted. Sorting is determined by the column
that has the sort focus. See Section 27.40 [Listview.SortColumn], page 158, for details.

2.3 Future

Here are some things that are on my to do list:

− port RapaGUI to iOS

− support for Scintilla for an advanced cross-platform editing component

− support for advanced user interfaces using wxAUI (docking etc.)

− support for drag’n’drop

− support for more widgets

2.4 Frequently asked questions

This section covers some frequently asked questions. Please read them first before asking
on the mailing list or forum because your problem might have been covered here.

Q: My GUI is not resizable. What am I doing wrong?

A: There are some things that you need to keep in mind for the resize feature to work
correctly. If there is a widget in your GUI that has a fixed size, you need to pad it using
resizable <rectangle> objects on its sides. Then your GUI will be resizable again. For
example, imagine you have a 64x64 <image> object in a horizontal group in your window.
RapaGUI won’t be able to resize this window unless you add rectangle objects to the sides
of your image object because RapaGUI needs to find an object that can be resized so you
need to take care that non-resizable objects in your GUI are always padded with resizable
ones. By the way, be careful with the <label> tag: Widgets of label class are actually not
resizable because resizable labels look quite awkward!

Q: RapaGUI doesn’t run on my Linux distribution although I have installed GTK+. What
could be the reason for this?

A: First make sure that you are using the correct RapaGUI version. RapaGUI for Linux is
available in versions for GTK+ 2 and GTK+ 3. Typically, Linux distributions only have one
of the two GTK versions installed so you need to use a RapaGUI build that matches your
install GTK version. You could also be missing some third party shared objects required by
RapaGUI. To see what shared objects are required by RapaGUI, run the following command
in a console: readelf -d rapagui.hwp

Chapter 2: About RapaGUI 7

Q: When run on a high-DPI monitor my application appears blurry on Windows. Why?

A: Make sure to set the DPIAware tag in Hollywood’s @OPTIONS preprocessor command to
True. See Section 3.12 [High-DPI support], page 20, for details.

Q: RapaGUI’s treeview widget doesn’t work on Android. Why?

A: Android doesn’t have a native treeview widget which is why RapaGUI can’t support
treeviews on Android.

2.5 Credits

RapaGUI was written by Andreas Falkenhahn. The design was inspired by my MUI Royale
plugin which only runs on AmigaOS and compatibles and was first published at the end of
2012. First experiments with a wxWidgets-based GUI toolkit for Hollywood were already
started in 2013. Initially I just planned to create a wrapper plugin that allows Hollywood
scripts to use wxWidgets but then I realized that the wxWidgets API can be quite com-
plicated to use and I thought that a MUI Royale-based approach would be much more
user-friendly and convenient for GUI scripting. By imitating the MUI programming par-
adigms in RapaGUI I could also release versions for AmigaOS and compatibles making
RapaGUI the first cross-platform GUI toolkit to support the Amiga’s native MUI toolkit.
Thus, RapaGUI has the potential to make a dream of many Amiga users come true: To
have a cross-platform GUI toolkit which uses native widgets on all platforms! RapaGUI
has finally accomplished this mission.

Thanks have to go to the wxWidgets team and Stefan Stuntz for their wonderful GUI
toolkits. Special thanks go to Vadim Zeitlin and Eric Jensen for their valuable help on
wxWidgets and Thore Böckelmann for his instant MUI fixes and his openness towards
useful MUI extensions which he also implemented very quickly.

Additional thanks to Alfonso Ranieri for TheBar.mcc and codesets.library, Allan Odgaard
for TextEditor.mcc, HTMLview.mcc and the TheBar.mcc, HTMLview.mcc and TextEdi-
tor.mcc Open Source Teams for maintaining those classes and fixing old bugs.

If you need to contact me, please send an email to andreas@airsoftsoftwair.de or use
the contact form at http://www.hollywood-mal.com.

andreas@airsoftsoftwair.de
http://www.hollywood-mal.com

9

3 Conceptual overview

3.1 Application tree

Every RapaGUI application is basically a tree containing a lot of MOAI objects that make
up the application. Typically, MOAI objects are just widgets like buttons, listviews, combo
boxes, etc. but they can also top-level windows or abstract objects like group objects which
are used to compute the GUI layout.

The root element of every application tree must always be an instance of Application class.
No MOAI object can exist outside the application object. Application objects are created by
calling moai.CreateApp() and there can be only one application object in every program.
The application object is responsible for handling all the events and messaging required by
your application. See Section 9.1 [Application class], page 61, for details.

The most important children of the application object are the top-level windows of your
application. These can be normal top-level windows or modal dialogs which block the rest
of your application while they are open. To create those objects in XML, you just have
to declare them using the <window> and <dialog> tags. See Section 62.1 [Window class],
page 301, for details. See Section 16.1 [Dialog class], page 95, for details.

Every window or dialog always needs to have exactly one root object which must be derived
from Group class. Group class allows you to combine one or more widgets in a horizontal,
vertical, or grid-based layout. This is one of the most important classes and it can be
accessed from XML by using the <vgroup>, <hgroup>, and <colgroup> tags. Whenever
the window size changes, all groups are relayouted automatically which means that you
don’t have to care about the complex task of recalculating your GUI layout based on the
current window size. RapaGUI does this all automatically for you. See Section 18.1 [Group
class], page 105, for details.

Another very important class is Area class. All widgets are children of Area class because
Area class basically just describes a rectangular region within the GUI layout on which
widget-dependent graphics are drawn. This means that you can use all attributes and
methods of this class on all MOAI objects that are widgets. For example, you can set the
dimensions of all your widgets by just using the attributes Area.Width and Area.Height.
This is usually unnecessary, however, because RapaGUI automatically chooses the dimen-
sions for all widgets. If you’re unhappy with RapaGUI’s choice, you can override it by using
those attributes, though. See Section 10.1 [Area class], page 67, for details.

3.2 GUI layout

As you have already seen above, in RapaGUI GUIs are defined entirely using the XML
markup language. This allows you to quickly create GUI layouts by just composing a tree
hierarchy made up of several windows, groups, and widgets. Here is an example of what an
application tree could look like in an XML declaration:

<?xml version="1.0" encoding="iso-8859-1"?>

<application>

<window title="Example GUI">

<vgroup>

<listview>

10 RapaGUI manual

<column/>

</listview>

<textentry/>

<hgroup>

<button id="add">Add</button>

<button id="rem">Remove</button>

</hgroup>

</vgroup>

</window>

</application>

And here is what this GUI looks like on Windows 7:

As you can see in the XML, no position coordinates or sizes are ever given. This is all
calculated automatically by RapaGUI to ensure a clean appearance on all systems. Keep
in mind that RapaGUI applications can run on a wide variety of systems: On Windows,
GTK, macOS, and even on AmigaOS. By omitting hard-coded window and widget sizes
and positions RapaGUI can automatically choose the best sizes and positions depending on
the current screen and font size. Of course, you can also force RapaGUI to use hard-coded
sizes by using the Area.Width and Area.Height attributes. To enforce a listview size of at
least 600x400 device-independent pixels, you could just write:

<listview width="600" height="400">

<column/>

</listview>

The only thing which you cannot modify is the widget position. Since the widget position
highly depends on the current UI font size it really doesn’t make sense to allow hard-coded
widget positions in a cross-platform GUI toolkit because there will be massive differences
between the different operating systems. Thus, RapaGUI doesn’t allow you to hard-code
widget positions.

3.3 Running GUIs

All you have to do to create and run GUIs declared using XML is to write a few lines of
Hollywood code. Let’s assume you saved the example GUI XML definition from above into
a file named GUI.xml, all you would have to do now to create and show this GUI from a
Hollywood script is creating a Hollywood script with the following lines:

@REQUIRE "RapaGUI"

Chapter 3: Conceptual overview 11

moai.CreateApp(FileToString("GUI.xml"))

Repeat

WaitEvent

Forever

That’s all! When you run the Hollywood script from above, your GUI will automatically
be created and shown, no matter if your script is running on Windows, Linux, macOS, or
AmigaOS.

3.4 Initializing RapaGUI

All you have to do to make your script use RapaGUI instead of Hollywood’s inbuilt graphics
engine is adding the following line to the top of your script:

@REQUIRE "rapagui"

Alternatively, if you are using Hollywood from a console, you can also start your script like
this:

Hollywood test.hws -requireplugins rapagui

RapaGUI accepts the following arguments in its @REQUIRE call:

ScaleGUI:

When running RapaGUI on a high-DPI monitor, all raster graphics will auto-
matically be scaled to fit to the monitor’s DPI settings. If you don’t want that,
set this tag to False. See Section 3.12 [High-DPI support], page 20, for details.
If this tag is set to True (also the default), you can control whether or not
bilinear interpolation should be used during scaling using the InterpolateGUI
tag (see below). Defaults to True. (V2.0)

InterpolateGUI:

If ScaleGUI is set to True (also the default), the InterpolateGUI tag can
be used to specify whether or not bilinear interpolation should be used when
scaling. Defaults to True. (V2.0)

ScaleHollywood:

When running RapaGUI on a high-DPI monitor, all Hollywood widgets will
automatically be scaled to fit to the monitor’s DPI settings. If you don’t want
that, set this tag to False. See Section 3.12 [High-DPI support], page 20,
for details. If this tag is set to True (also the default), you can control
whether or not bilinear interpolation should be used during scaling using the
InterpolateHollywood tag (see below). Defaults to True. (V2.0)

InterpolateHollywood:

If ScaleHollywood is set to True (also the default), the InterpolateHollywood
tag can be used to specify whether or not bilinear interpolation should be
used when scaling. Note that in contrast to the InterpolateGUI tag the
InterpolateHollywood tag defaults to False which means that by default,
bilinear interpolation is not used for Hollywood widgets. (V2.0)

HideDisplays:

By default, RapaGUI will hide all Hollywood displays on startup. If you don’t
want that, set this tag to True. This can be useful when using RapaGUI in

12 RapaGUI manual

Hollywood emulation mode, i.e. without using any of RapaGUI’s GUI function-
ality but just to get some features that Hollywood does not support by default
on some platforms (e.g. menus on Linux, or inter-process communication on
Linux and macOS). (V2.0)

Here is an example of how to pass arguments to the @REQUIRE preprocessor command:

@REQUIRE "rapagui", {ScaleGUI = False}

Alternatively, you can also use the -requiretags console argument to pass these arguments.
See the Hollywood manual for more information.

3.5 Object handling

As you’ve already seen RapaGUI uses XML files to create MOAI objects. When creating
objects you can use all attributes marked with the letter I in the applicability section of
the accompanying attribute documentation. For example, to create a textentry object with
a maximum length of 80 characters you would simply use the TextEntry.MaxLen attribute
and include it in your XML declaration.

<textentry id="mystring" maxlen="80"/>

Once your object is ready, you can start talking to it by setting or getting its attributes
or by running its methods. For that purpose it is important that you give your object
an identifier using the id attribute so that the functions moai.Set(), moai.Get() and
moai.DoMethod() can find your object. In the code above we assigned the id mystring to
our textentry widget. Here’s an example of how we could talk to this widget now:

moai.Set("mystring", "text", "look")

s$ = moai.Get("mystring", "text")

DebugPrint("Always " .. s$.. " on the bright side of life.")

As already mentioned above, all attributes and methods are completely documented in the
documentation coming with this distribution.

The next thing you have to do is handling events that are triggered by your GUI. This is
covered in the next section.

3.6 Event handling

RapaGUI events are handled in the very same way as normal Hollywood events. This means
that you just have to pass a callback function to Hollywood’s InstallEventHandler()

function and whenever a RapaGUI event is triggered, your callback function will be called.

Here is an example how to install a RapaGUI event callback:

InstallEventHandler({RapaGUI = p_EventHandler})

Whenever an event occurs, RapaGUI will then call p_EventHandler() with a table as
parameter. The table will have the following fields initialized:

Action: Initialized to "RapaGUI".

Class: Contains the name of the MOAI class this event comes from, e.g. "Choice".

Attribute:

Contains the name of the class attribute that has triggered the event, e.g.
"Active".

Chapter 3: Conceptual overview 13

ID: Contains the ID of the MOAI object that triggered this event, e.g. "mychoice".

TriggerValue:

Contains the current value of the attribute that triggered this event. You could
also find this out by doing a moai.Get() on the object but it is more convenient
to get the current value directly to your event callback.

MOAIUserData:

If the object was assigned certain userdata, it will be passed to the event handler
callback in this tag. See Section 33.8 [MOAI.UserData], page 187, for details.

NotifyData:

If the object was assigned certain notify data, it will be passed to the event
handler callback in this tag. See Section 33.7 [MOAI.NotifyData], page 187, for
details.

On top of that it is also necessary to tell RapaGUI which events you would like to receive.
Only events you explicitly request to receive are passed to your event callback to minimize
overhead. An exception are button, toolbar button and menu item events. They are passed
to your event callback even if you haven’t requested them. The reason for this design choice
is that normally all of these events need to be individually handled because the user expects
something to happen when pressing a button.

All RapaGUI events are coupled to attributes of MOAI objects. The next section describes
this in detail.

3.7 Attribute notifications

RapaGUI’s event handling is based on the values of certain attributes of the different MOAI
classes. You can listen to the values of all attributes that have an applicability of N. If you
set up a listener on an attribute value, RapaGUI will run your event callback whenever the
attribute value changes.

For example, you could set up a listener on the Listview.Active attribute which contains
the active item of a listview widget. If you do this, your event handler will be called
whenever the active item of the respective listview widget changes. To install a listener
on a certain attribute, you have to set up a notification for this attribute in your object
declaration. This is done directly in the XML file by using the Notify attribute that is
accepted by all MOAI classes:

<listview id="lv" notify="active">

<column>

<item>One</item>

<item>Two</item>

<item>Three</item>

</column>

</listview>

The code above will run your event callback whenever the active item of the listview ob-
ject that has the id lv changes because you’ve requested to listen to the value of the
Listview.Active attribute.

If you want to listen to multiple notifications on the same MOAI object, you have to separate
them using semicolons, e.g.:

14 RapaGUI manual

<listview id="lv" notify="active; doubleclick">

...

</listview>

As you can see, the code above installs listeners on both attributes, Listview.Active and
Listview.DoubleClick, so that your event callback is also invoked when the user double
clicks on a listview entry.

Alternatively, you can also set up or remove notifications at run-time using the
moai.Notify() function from your code.

To print the currently active listview item from your event handler, you could then use the
following code:

Function p_EventHandler(msg)

Switch msg.action

Case "RapaGUI":

Switch msg.attribute

Case "Active":

Switch msg.id

Case "lv":

DebugPrint("Active listview item:", msg.triggervalue)

EndSwitch

EndSwitch

EndSwitch

EndFunction

Keep in mind, though, that attribute values can also be changed manually. For example,
your program might want to manually activate a certain listview item by doing something
like this:

moai.Set("lv", "active", 5) ; activate item number 6

Since the call above changes the value of the Listview.Active attribute as well, your event
handler callback will be triggered by this call, too. If you don’t want this, you can use the
special attribute MOAI.NoNotify in your call to moai.Set(). Whenever MOAI.NoNotify

is set to True, the attribute’s value will be changed without invoking any event handlers.
Thus, to change the active listview item without triggering any event callbacks, you would
just write:

moai.Set("lv", "active", 5, "nonotify", True)

Finally, as already mentioned in the previous section, there are some attributes
that RapaGUI always listens to. These are: Button.Pressed, Button.Selected,
Toolbarbutton.Pressed, Toolbarbutton.Selected, and Menuitem.Selected. Since
these are so common and widely used and you will normally always want to listen to
attributes like Button.Pressed because pressing a button will always cause a reaction,
RapaGUI listens to them automatically. Thus, you don’t have to explicitly request a
notification on these attributes, i.e. writing the following is redundant:

<button id="btn" notify="pressed">Click me</button>

Instead, you can just write:

<button id="btn">Click me</button>

The same is true for menu items and toolbar buttons.

Chapter 3: Conceptual overview 15

3.8 Dynamic objects

Most applications create their GUI by a simple call to moai.CreateApp() which is passed
an XML declaration that contains the complete user interface of the whole application. In
some situations, though, it might be necessary to create MOAI objects after the call to
moai.CreateApp() and insert them into the existing application.

This is possible by using the moai.CreateObject() API. This function allows you to create
a MOAI object from an XML declaration, pretty similar to what moai.CreateApp() does
except that moai.CreateObject() doesn’t allow you to create an application because there
can be only one application.

For example, you can create a button using moai.CreateObject() like this:

moai.CreateObject([[<button id="mybutton">Click me</button>]])

It is very important to set an identifer for the MOAI object you create using
moai.CreateObject() because the identifier is needed to refer to the object later. Now
that we have created the button we could insert it into an existing window layout. Let’s
suppose our window layout currently looks like this:

<window>

<hgroup id="mygroup">

<button id="ok">OK</button>

<button id="cancel">Cancel</button>

</hgroup>

</window>

We could now use the Group.Insert method to insert the newly created button after the
"OK" button. We would have to use the following code to do that:

moai.DoMethod("mygroup", "initchange")

moai.DoMethod("mygroup", "insert", "mybutton", "ok")

moai.DoMethod("mygroup", "exitchange")

You can see that we’re also calling the methods Group.InitChange and Group.ExitChange.
This is very important. Those methods have to be run whenever you change the children
of a group, i.e. you remove or add children. RapaGUI needs you to call these methods
because after removing or adding group children a window relayout becomes necessary.
That’s why simply calling Group.Insert or any other method that changes the number of
group children isn’t enough.

Of course, we can also remove children from groups. This is possible by using Group.Remove.
The following code removes the "Cancel" button from the above window layout:

moai.DoMethod("mygroup", "initchange")

moai.DoMethod("mygroup", "remove", "cancel")

moai.DoMethod("mygroup", "exitchange")

After this call, the MOAI object with the id "cancel" has become a detached object. This
means that you could also attach it to a group now again by using Group.Insert or a similar
method. Note that all methods which insert MOAI objects into existing layouts only accept
detached objects. It’s not possible to insert the same MOAI object into multiple groups.
As soon as you insert a MOAI object into a group (or menu tree), it changes its state from
detached to attached. Once a MOAI object is in attached state, it can no longer be passed
to methods which expect a detached object. In order to turn a MOAI object from attached

16 RapaGUI manual

to detached state, you need to use a method like Group.Remove to detach a MOAI object
from a group.

As a final note, the XML code you pass to moai.CreateObject() can also be a
complete tree, e.g. you could create a complete window with just a single call to
moai.CreateObject(). This is all possible. moai.CreateObject() isn’t limited to
creating single MOAI objects but it can create multiple objects for you as well. When
you’re creating a window or dialog with moai.CreateObject(), though, don’t forget to
add it to the application object by calling Application.AddWindow since window objects
are also in detached state by default unless they have been added to an application
object. For dialogs, you can just use moai.CreateDialog() which will implicitly call
Application.AddWindow.

3.9 Sizeability

One of RapaGUI’s premium features is its capability to automatically recalculate the com-
plete GUI layout when resizing the window that contains the widgets. This, however, is
only possible if all groups in a window can be resized, otherwise the window’s size will
stay fixed and won’t be resizable. In order to create windows that are freely resizable, you
need to know which widgets are resizable and which are not. Consider the following GUI
definition:

<window>

<vgroup>

<button id="btn">Hello World!</button>

</vgroup>

</window>

This window will only be horizontally resizable because button widgets are only horizontally
resizable by default. They aren’t vertically sizable by default because buttons which change
their vertical size look pretty ugly. Normally, a button’s height is fixed to the standard
button height as defined by the theme currently active on the operating system.

If you want this window to be resizable, you have several options: A widely used option is
to insert empty space using objects of Rectangle class. These are resizable in all directions.
Thus, if you insert a <rectangle> object, your window will suddenly become resizable in
all directions:

<window>

<vgroup>

<button id="btn">Hello World!</button>

<rectangle/>

</vgroup>

</window>

Alternatively, you could also insert a different widget which is vertically resizeable, for
example a listview. Or you could even make the button vertically resizable by setting the
Area.FixHeight attribute to False:

<window>

<vgroup>

<button id="btn" fixheight="false">Hello World!</button>

</vgroup>

Chapter 3: Conceptual overview 17

</window>

But this doesn’t look so pretty because now the user could end up with a button that is
a few hundred pixels in height. That’s why the <rectangle> approach is the one most
oftenly used to insert padding space for non-resizable objects.

In order to use <rectangle> objects as padding space in the right positions, you need to
know which widgets are resizeable by default and which are not. Therefore, here is an
overview of the sizeability of the individual widgets supported by RapaGUI:

Busybar class:

Horizontally resizable.

Button class:

Horizontally resizable.

Checkbox class:

Not resizable.

Choice class:

Horizontally resizable.

Combobox class:

Horizontally resizable.

Hollywood class:

Not resizable.

HLine class:

Horizontally resizable.

HSpace class:

Vertically resizable.

HTMLview class:

Resizable in all directions.

Image class:

Not resizable.

Label class:

Not resizable.

Listview class:

Resizable in all directions.

Pageview class:

Resizable in all directions.

Popcolor class:

Horizontally resizable.

Popfile class:

Horizontally resizable.

Popfont class:

Horizontally resizable.

18 RapaGUI manual

Poppath class:

Horizontally resizable.

Progressbar class:

Horizontally resizable for horizontal progress bars. Vertically resizable for ver-
tical progress bars.

Radio class:

Not resizable.

Rectangle class:

Resizable in all directions.

Scrollbar class:

Horizontally resizable for horizontal scrollbars. Vertically resizable for vertical
scrollbars.

Scrollcanvas class:

Resizable in all directions.

Scrollgroup class:

Resizable in all directions.

Slider class:

Horizontally resizable for horizontal sliders. Vertically resizable for vertical
sliders.

Text class:

Horizontally resizable.

Texteditor class:

Resizable in all directions.

Textentry class:

Horizontally resizable.

Textview class:

Resizable in all directions.

Treeview class:

Resizable in all directions.

VLine class:

Vertically resizable.

VSpace class:

Horizontally resizable.

Of course, you can change these defaults by setting the Area.FixWidth and
Area.FixHeight attributes accordingly to enable or disable certain sizeability settings, but
this is often not recommended because it will look pretty ugly if for example a textentry
widget is suddenly vertically resizable. This would unnecessarily confuse the user because
he might end up with a textentry widget which is 300 pixels in height but only allows to
enter one line of text. Thus, the best idea is to respect the OS defaults for the standard
widgets.

Chapter 3: Conceptual overview 19

Of course, there are also widgets where it’s completely acceptable to override the defaults
from above. For example, widgets deriving from Hollywood class are non-resizable by
default but of course you are encouraged to use Area.FixWidth and Area.FixHeight to
adjust the widget’s sizeability to your personal needs.

3.10 Applicability

In the documentation of every object attribute you will find information about the appli-
cability of this attribute. Attribute applicability is described in the form of a combination
of the four letters I, S, G, and N. This tells you the various contexts that the attribute can
be used in.

Here is an explanation of the different applicability contexts:

I Attribute can be used when creating the object in the XML file. (initialization
time)

S Attribute can be used with moai.Set() at runtime.

G Attribute can be used with moai.Get() at runtime.

N Notifications on this attribute are possible either by using the "Notify" attribute
in the XML declaration or by calling the moai.Notify() function at runtime.

For example, if an attribute has an applicability of just "I", then this attribute can only
be used during object initialization time. It cannot be changed later using moai.Set().
If an attribute has an applicability of just "S" on the other hand, it is not possible to
specify the attribute already at initialization time in the XML file. Attributes that have an
applicability of "ISGN" can be used in all contexts.

3.11 Device-independent pixels

All position and size specifications in RapaGUI must be in device-independent pixels. This
has the advantage that they will be independent of the current monitor’s DPI setting so
that your application will still look correctly when run on high-DPI monitors, for example.

Consider the following declaration of a window:

<window width="640" height="480">

...

</window>

This will declare a window whose width is 640dip and whose height is 480dip. If the
current monitor doesn’t use DPI scaling (e.g. 96dpi on Windows, 72dpi on macOS), the
device-independent pixels will be identical to physical pixels so that the window’s size will
be 640x480 pixels. If the monitor is configured to use DPI scaling, however, the device-
independent pixels will automatically be adapted to the monitor’s DPI setting. For example,
on a 192dpi monitor (i.e. 200% scale on Windows) the window’s physical dimensions on
the screen will be 1280x960 pixels instead because RapaGUI will automatically adapt the
device-independent pixels to the current monitor’s DPI.

Note that it is generally a good idea to avoid hard-coding specific positions and sizes and
let RapaGUI determine these automatically from your layout. This guarantees a maximum
amount of compatibility between different operating systems and their specific window
managers, fonts, themes, and decorations.

20 RapaGUI manual

Also make sure to read the chapter on High-DPI support to learn about other things to
consider when designing an application that should be compatible with high-DPI monitors.
See Section 3.12 [High-DPI support], page 20, for details.

3.12 High-DPI support

RapaGUI has full support for high-DPI displays. Normally, RapaGUI handles everything
automatically for you so that your application should look the same regardless of the mon-
itor’s DPI setting. This is achieved by handling all position and size values in device-
independent pixels which makes RapaGUI applications scale nicely to different monitor
DPI settings. Furthermore, RapaGUI will automatically scale all raster graphics, e.g. but-
ton images set using Button.Icon, to fit to the monitor’s DPI setting.

Note that RapaGUI’s automatic scaling of raster graphics could lead to images becoming
blurry on high-DPI monitors. You can change that by either providing sets of images for
different DPI settings instead of just a single image or by using vector images that can be
scaled with no losses in quality to any size.

For example, let’s suppose you want to add a 32x32px icon to your button using the
Button.Icon attribute. If you set Button.Icon to a raster brush and the user’s moni-
tor has a DPI scaling of 200% activated, RapaGUI will scale the image to 64x64px which
will look blurry. So you could either set Button.Icon to the identifier of a vector brush or
you could create a Hollywood icon, add 32x32px and 64x64px images (and possibly more)
to it, and then pass this icon to Button.Icon.

Note that in that case you’ll also have to set the Button.IconType attribute to Icon to
tell RapaGUI that you’ve passed the identifier of an icon instead of a brush, which is the
default type for Button.Icon. In that case, RapaGUI will use the 32x32px image inside
the icon in case the monitor has no DPI scaling activated or it will use the 64x64px image
in case the monitor has a DPI scaling of 200% activated. If the DPI scaling is something
between 100% and 200%, RapaGUI will scale the image inside the icon whose size is closest
to the desired target size.

By default, all widgets that support images expect you to pass Hollywood brushes. If
you always want to pass Hollywood icons instead, you can also set the global attribute
Application.UseIcons to True. This will change the default of all tags accepting images
from Hollywood brushes to Hollywood icons.

As described above, when providing images to RapaGUI using Hollywood brushes that
contain raster data, RapaGUI will automatically scale those raster brushes to fit to the
current monitor’s DPI settings. If you don’t want that, you can set the ScaleGUI tag to
False when you @REQUIRE the RapaGUI plugin. See Section 3.4 [Initializing RapaGUI],
page 11, for details. Bilinear interpolation during scaling can be turned off by setting the
InterpolateGUI tag to False on @REQUIRE. Alternatively, automatic image scaling can
also be configured on a per-widget basis. For example, for button images you can control
automatic image scaling by setting the Button.IconScale tag.

Also, all Hollywood widgets will be automatically scaled to fit to the current monitor’s DPI
settings. If you don’t want that, you can set the ScaleHollywood tag to False when you
@REQUIRE the RapaGUI plugin. See Section 3.4 [Initializing RapaGUI], page 11, for details.
Bilinear interpolation during scaling can be enabled by setting the InterpolateHollywood
tag to True on @REQUIRE.

Chapter 3: Conceptual overview 21

With Scrollcanvas class the dimensions you specify in Scrollcanvas.VirtWidth and
Scrollcanvas.VirtHeight are in device-independent pixels by default and RapaGUI
will automatically apply the system’s scale factor to the contents drawn by the
Scrollcanvas.Paint function. If you want to have fine-tuned control, you can set the
Scrollcanvas.AutoScale attribute to False. In that case, Scrollcanvas.VirtWidth

and Scrollcanvas.VirtHeight are interpreted as physical pixels and no auto scaling
will be done so that your paint function can draw high resolutions graphics without any
quality loss due to scaling.

Finally, keep in mind that you explicitly have to enable DPI-aware mode on Windows if you
want your application to support high-DPI modes natively. This can be done by setting
the DPIAware tag in the @OPTIONS preprocessor command to True, e.g.

@OPTIONS {DPIAware = True}

If you don’t do that, your application won’t be DPI-aware which means that Windows will
run it in a special compatibility mode. In this compatibility mode, Windows will scale your
application to match the monitor’s DPI setting but this will lead to a blurry appearance.
That’s why it is suggested to set DPIAware to True, as shown above.

Note that on Linux you should use the GTK+ 3 version of RapaGUI if you want to support
high-DPI modes because GTK+ 2 doesn’t support high-DPI modes very well.

3.13 Keyboard shortcuts

RapaGUI allows you to set up keyboard shortcuts really easily by simply using an underscore
character (" ") before the character you would like to set up as a keyboard shortcut. You
should always provide support for keyboard shortcuts because many users prefer to use
them instead of the mouse, especially when it comes to actions which have to be repeated
dozens of times it is much easier to use the keyboard instead of, just as an instance, having
to navigate to certain submenus hidden deep within the menu hierarchy all the time. The
following classes support keyboard shortcuts defined through the underscore character:

− Button class

− Checkbox class

− Label class

− Menu class

− Menuitem class

− Radio class

− Slider class

− Text class

− Toolbarbutton class

Here is an example of how to set up two keyboard shortcuts for widgets derived from Button
class:

<hgroup>

<button id="ok">_OK</button>

<button id="cancel">_Cancel</button>

</hgroup>

22 RapaGUI manual

The XML code above will set up "O" and "C" as keyboard shortcuts. On Windows, the
user has to press ALT+O to select the "OK" button and ALT+C to select the "Cancel" button.
On other platforms the combinations are sometimes different, e.g. on macOS you have to
use the COMMAND key instead of the ALT key.

Since Label class doesn’t create widgets that can be controlled by the user, specifying a
keyboard shortcut for labels simply activates the next widget in the GUI layout, which is
usually the widget that is described by the label. For example:

<hgroup>

<label>_Name</label>

<textentry/>

</hgroup>

As you can see, in the XML code above "N" has been set up as a keyboard shortcut by
using an underscore character. Pressing ALT+N will activate the text entry widget then since
label widgets cannot take the window focus.

In the rare case that you want to use the underscore character as a label text for one of your
widgets and not have it automatically converted into a token indicating a keyboard shortcut,
you can just set the Area.NoAutoKey attribute to True. If this is set, RapaGUI will simply
show the underscore character and won’t treat it as a special token. Note: Since menu and
menuitem objects aren’t derived from Area class, you need to use Menu.NoAutoKey and
Menuitem.NoAutoKey in case you want to disable automatic shortcut generation for menu
or menuitem objects.

If you need to use more complex keyboard shortcuts (e.g. certain function or control keys,
combinations of keys), you have to set up an accelerator table using Accelerator class for
your window. Accelerator class allows the definition of advanced keyboard shortcuts which
are also independent of any widgets in your window. If your complex keyboard shortcuts
are linked to menu items, however, you don’t have to use Accelerator class but you can just
set the Menuitem.Shortcut attribute to the desired shortcut. This will automatically set
up an accelerator then. See Section 32.6 [Menuitem.Shortcut], page 180, for details. See
Section 7.1 [Accelerator class], page 57, for details.

3.14 Text formatting codes

Widgets of type Textview class and Texteditor class support text formatting if the Styled
attribute of those classes is set to True. RapaGUI supports text formatting by special
control codes which are described in this section.

Formatting codes always start with an escape character followed by a sequence of characters
that describe the formatting code. In decimal notation the escape character equals ASCII
code 27, which is 33 in octal and $1B in hexadecimal notation. Care has to be taken when
using formatting codes because usage is different between XML files and Hollywood source
files. In XML files the octal notation is used, i.e. you start an escape sequence using
a backslash and the octal number 33 (’\33’). In Hollywood source codes, however, octal
numbers are not supported after a backslash. Hollywood always expects the ASCII code in
decimal notation after a backslash. That is why you have to use ’\27’ to initiate an escape
sequence from Hollywood code.

Chapter 3: Conceptual overview 23

To illustrate this difference a little bit better, let us have a look at two examples. Here is
an example for creating a bold text object in an XML file. Bold text is enabled by using
the character ’b’ after the escape character:

<textview styled="true" id="mytext">\33bBold text</textview>

You can see that the octal notation is used here because XML files expect an octal number
after a backslash. In Hollywood, however, it is different because Hollywood expects a
decimal character after a backslash. So here is how you have to specify escape codes when
using them from a Hollywood source file:

moai.Set("mytext", "text", "\27bBold text")

You can see that the code is the same except that we use \27b instead of \33b because
Hollywood always uses decimal instead of octal numbers after a backslash.

The following formatting codes are currently supported:

\33u Set the text style to underline.

\33b Set the text style to bold.

\33i Set the text style to italic.

\33n Set the text style back to normal.

\33P[RRGGBB]

Change front color to the specified RGB color. The RGB color has to be
specified in the form of six hexadecimal digits RRGGBB. On AmigaOS and
compatibles this requires MUI 4.0.

3.15 Implementing help texts

RapaGUI supports several ways of implementing context-sensitive help texts in your appli-
cations. First of all, every widget can have tooltips that pop up after the mouse has been
hovering over a widget for some time. This is done via the Area.Tooltip attribute. As
Area class is the super class for all widgets, you can use this attribute to add tooltip help
to all your widgets. Here is an example:

<vgroup>

<listview tooltip="List of loaded video files">

<column/>

</listview>

<button id="btn1" tooltip="Plays a video stream">Play</button>

<button id="btn2" tooltip="Stops a video stream">Stop</button>

<button id="btn3" tooltip="Exits the program.">Quit</button>

</vgroup>

Furthermore, menu items and toolbar buttons support the attributes Menuitem.Help and
Toolbarbutton.Help, respectively. If your window has a status bar attached, then the text
you specify in these attributes is automatically shown in the status bar whenever the mouse
cursor is over the respective menu item or toolbar button. This kind of visual feedback is
very helpful because it is shown immediately in the status bar and the user doesn’t have to
wait for a few seconds as it is the case with tooltips.

24 RapaGUI manual

3.16 Context menus

RapaGUI supports context menus for each of its widget classes. Context menus are assigned
to the individual widgets by using the Area.ContextMenu attribute. As Area class is the
super-class for all widgets, you can use this attribute with every MOAI object that creates
a widget. If you’ve declared Area.ContextMenu for a widget, RapaGUI will automatically
show the context menu whenever the user clicks the right mouse button while the cursor is
over a widget that has a context menu attached.

Area.ContextMenu expects an object derived from Menu class as its argument so you have
to create such a menu MOAI object for your context menu in XML first. It is very important
to note that you have to declare your menus in the <application> scope because menus
are global objects and are only attached to windows or widgets later on. That is why it is
not allowed to declare menus inside a <window> XML scope.

Here is an example in which we add a cut, copy, and paste context menu to an object of
type Texteditor class:

<menu title="Context menu" id="ctxtmenu">

<item>Cut</item>

<item>Copy</item>

<item>Paste</item>

</menu>

<window>

...

<texteditor contextmenu="ctxtmenu"/>

...

</window>

Note that when using Menu class to create context menus, the Menu.Title attribute is only
used on AmigaOS and compatibles. Context menus on Windows, Linux, and macOS don’t
show a title.

Also note that context menu events will be delivered via the standard Menuitem.Selected

mechanism and not through a special context menu event handler. Since you can use
the same menu object as a context menu for several widgets, you need a way to find out
the widget whose context menu triggered the event. To give you this information, the
event message will contain an additional item named "Parent" which contains the ID of
the context menu’s hosting widget. This allows you to re-use the same menu object as a
context menu for multiple parent widgets.

AmigaOS users please note that MUI doesn’t allow context menu objects to be shared
across windows. You are not allowed to use the same menu object with widgets in different
windows. It’s okay to re-use a menu object for several widgets in the same window but
not for widgets in another window. All other platforms don’t have this limitation, only
AmigaOS is affected here.

3.17 Internationalization

RapaGUI easily allows you to add internationalization (i18n) support to your applications
because it seamlessly integrates with Hollywood’s catalog system. Thus, all you have to

Chapter 3: Conceptual overview 25

do to support multiple languages in your application is create a catalog containing all
language-dependent texts used by your program and open it at startup, for example using
the @CATALOG preprocessor command, e.g.

@CATALOG "MyApp.catalog"

You can then address individual catalog entries by using either the MOAI.I18N attribute or
the @i18n: directive. All attributes that accept a string argument also accept the MOAI.I18N
attribute which allows you to specify a catalog string index that should be used if a catalog
for the user’s system language is available. The string index can either be an absolute
numeric value or a Hollywood constant. For example, to create a multi-lingual button you
could do the following:

<button i18n="0">Click me</button>

With such XML code, the text "Click me" will only be used if the user’s system language
is English or RapaGUI can’t find a catalog for the current system language. Otherwise,
RapaGUI will use the string at index 0 in the catalog file instead of the default text "Click
me".

For for locale-dependent strings that are passed in tag attributes you have to use the @i18n:
directive. Just append this suffix to the string, followed by a numeric value or a Hollywood
constant and Hollywood will use the specified catalog string instead if there’s a catalog for
the user’s system language available. For example:

<window title="My application@i18n:1">...</window>

In that example, RapaGUI will use the window title "My application" only if the user’s
system language is English or if RapaGUI can’t find a catalog for the current system lan-
guage. Otherwise, RapaGUI will use the string at index 1 in the catalog file instead of the
title "My application".

As already pointed out, you can also use Hollywood constants instead of hard-coded nu-
meric values. Using Hollywood constants might be more convenient to maintain your XML
because it allows you to easily add and remove entries. Using Hollywood constants, the
XML from above looks like this:

<button i18n="#CAT_BUTTON">Click me</button>

<window title="My application@i18n:#CAT_TITLE">...</window>

Note that all these internationalization features only apply to the XML. All changes
that are made at runtime need to be handled manually, so you need to use Hollywood’s
GetCatalogString() function to obtain the correct catalog string when making
locale-dependent changes to the GUI at runtime, e.g. by calling functions like moai.Set().

3.18 Character encoding

RapaGUI supports two character encodings in the XML files used to describe the GUI
layout: iso-8859-1 and utf-8. If you use utf-8 encoding on AmigaOS and compatibles,
RapaGUI will require codesets.library to do character conversion from UTF-8 to the
system’s default charset.

Amiga users please note that MUI does not support UTF-8. MUI always uses the system’s
default charset. Thus, if you use UTF-8 encoding in your XML files, RapaGUI will try
to map these strings to the system’s default charset. This must not always succeed. For
example, if the system’s default charset is ISO-8859-1 and the UTF-8 XML file uses some

26 RapaGUI manual

Eastern European characters not present in ISO-8859-1 then they will not be displayed
correctly. They will only be displayed correctly if the system’s default charset has them as
well.

3.19 Hollywood bridge

A powerful feature of RapaGUI is that it allows you to embed complete Hollywood displays
inside your GUIs using Hollywood class. Whenever you draw something to a Hollywood
display that is attached to Hollywood class, it will automatically be drawn to your widget
as well. You can even hide the Hollywood display so that the user does not even notice that
Hollywood is running in the background. Furthermore, all mouse clicks and key strokes that
happen inside Hollywood class will be forwarded to the corresponding Hollywood display as
normal Hollywood events. Thus, Hollywood class allows you to use almost all of Hollywood’s
powerful features inside a GUI widget as well.

Let’s have a look at an example. The following code uses Hollywood class to embed a
playing animation of size 320x200 inside a widget. For this, the Hollywood display’s size
is changed to 320x200 and then it is embedded in the GUI using a MOAI object of type
Hollywood class. Here is the XML GUI declaration first:

<?xml version="1.0" encoding="iso-8859-1"?>

<application>

<window title="Hollywood bridge">

<vgroup>

<hgroup>

<rectangle/>

<hollywood display="1"/>

<rectangle/>

</hgroup>

<hgroup>

<button id="play">Play</button>

<button id="stop">Stop</button>

</hgroup>

</vgroup>

</window>

</application>

Note that we use MOAI objects of Rectangle class to pad the non-resizable Hollywood
object. This is necessary for the GUI to stay resizable. Here is the code now that shows
you to connect your GUI widget and Hollywood:

@REQUIRE "RapaGUI"

@ANIM 1, "amy_walks.anim"

@DISPLAY {Width = 320, Height = 200}

Function p_AnimFunc()

Local numframes = GetAttribute(#ANIM, 1, #ATTRNUMFRAMES)

curframe = Wrap(curframe + 1, 1, numframes + 1)

DisplayAnimFrame(1, 0, 0, curframe)

EndFunction

Chapter 3: Conceptual overview 27

Function p_EventFunc(msg)

Switch msg.Class

Case "Button":

Switch msg.Attribute

Case "Pressed":

Switch msg.ID

Case "play":

SetInterval(1, p_AnimFunc, 50)

Case "stop":

ClearInterval(1)

EndSwitch

EndSwitch

EndSwitch

EndFunction

InstallEventHandler({RapaGUI = p_EventFunc})

moai.CreateApp(FileToString("GUI.xml"))

Repeat

WaitEvent

Forever

With a little bit more work we can also make the anim movable with the mouse. The user
can then click into the Hollywood object and drag the anim around using his mouse. Here
is the code for that:

@REQUIRE "RapaGUI"

@ANIM 1, "amy_walks.anim"

@DISPLAY {Width = 320, Height = 200}

Function p_AnimFunc()

Local numframes = GetAttribute(#ANIM, 1, #ATTRNUMFRAMES)

curframe = Wrap(curframe + 1, 1, numframes + 1)

SelectBrush(1)

Cls

DisplayAnimFrame(1, offx, offy, curframe)

EndSelect

DisplayBrush(1, 0, 0)

EndFunction

Function p_MouseFunc()

If IsLeftMouse() = True

Local mx, my = MouseX(), MouseY()

If (grabx = -1) And (graby = -1) Then

grabx, graby = mx - offx, my - offy

offx = mx - grabx

offy = my - graby

28 RapaGUI manual

Else

grabx, graby = -1, -1

EndIf

EndFunction

Function p_EventFunc(msg)

Switch msg.Class

Case "Button":

Switch msg.Attribute

Case "Pressed":

Switch msg.ID

Case "play":

SetInterval(1, p_AnimFunc, 50)

SetInterval(2, p_MouseFunc, 20)

Case "stop":

ClearInterval(1)

ClearInterval(2)

EndSwitch

EndSwitch

EndSwitch

EndFunction

CreateBrush(1, 320, 200)

InstallEventHandler({RapaGUI = p_EventFunc})

moai.CreateApp(FileToString("GUI.xml"))

Repeat

WaitEvent

Forever

Finally, it is also possible to make the Hollywood object resizable by setting the attributes
Area.FixWidth and Area.FixHeight to False. Whenever the user resizes the window,
your Hollywood display will receive a SizeWindow event that you can listen to using the
InstallEventHandler() Hollywood function. When using a resizable Hollywood object,
we can remove the two <rectangle> objects used solely as padding space. The XML code
looks like this then:

<?xml version="1.0" encoding="iso-8859-1"?>

<application>

<window title="Hollywood bridge">

<vgroup>

<hollywood display="1" fixwidth="false" fixheight="false"/>

<hgroup>

<button id="play">Play</button>

<button id="stop">Stop</button>

</hgroup>

</vgroup>

Chapter 3: Conceptual overview 29

</window>

</application>

Our code is pretty much the same as before with the exception that we now have to handle
the SizeWindow event to take care of GUI resize events. Here is the adapted code from
above:

@REQUIRE "RapaGUI"

@ANIM 1, "amy_walks.anim"

@DISPLAY {Width = 320, Height = 200}

Function p_AnimFunc()

Local numframes = GetAttribute(#ANIM, 1, #ATTRNUMFRAMES)

curframe = Wrap(curframe + 1, 1, numframes + 1)

SelectBrush(1)

Cls

DisplayAnimFrame(1, offx, offy, curframe,

{Width = swidth, Height = sheight})

EndSelect

DisplayBrush(1, 0, 0)

EndFunction

Function p_MouseFunc()

If IsLeftMouse() = True

Local mx, my = MouseX(), MouseY()

If (grabx = -1) And (graby = -1) Then

grabx, graby = mx - offx, my - offy

offx = mx - grabx

offy = my - graby

Else

grabx, graby = -1, -1

EndIf

EndFunction

Function p_EventFunc(msg)

If msg.Action = "SizeWindow"

swidth = msg.Width

sheight = msg.Height

CreateBrush(1, swidth, sheight)

Return

EndIf

Switch msg.Class

Case "Button":

Switch msg.Attribute

Case "Pressed":

Switch msg.ID

Case "play":

30 RapaGUI manual

SetInterval(1, p_AnimFunc, 50)

SetInterval(2, p_MouseFunc, 20)

Case "stop":

ClearInterval(1)

ClearInterval(2)

EndSwitch

EndSwitch

EndSwitch

EndFunction

swidth, sheight = 320, 200

CreateBrush(1, swidth, sheight)

InstallEventHandler({RapaGUI = p_EventFunc, SizeWindow = p_EventFunc})

moai.CreateApp(FileToString("GUI.xml"))

Repeat

WaitEvent

Forever

From this example you can see that Hollywood class is really powerful and can be used to
achieve lots of innovative GUI ideas only limited by your creativity!

3.20 Image cache

Many MOAI classes allow you to use icons with the widgets they create, e.g. you can add
an icon to a button widget by simply using the Button.Icon attribute. All MOAI classes
that can deal with icons require you to pass either a Hollywood brush or a Hollywood icon
that shall be used as the icon to the class.

What is important to know now is that RapaGUI caches these images for reasons of per-
formance and economy. Just imagine a listview with thousands of rows and an icon in each
of them. It would be an absolute performance killer if RapaGUI had to convert these icons
from a Hollywood brush/icon into a RapaGUI image for every single row. That’s why the
images are cached.

Take a look at this example:

<button id="ok" icon="1">OK</button>

The declaration above puts Hollywood brush number 1 next to the text "OK" on the
button’s label. RapaGUI will now cache the image data of Hollywood brush number 1
internally and whenever there is a reference to Hollywood brush number 1 again, it will
simply take the copy from its cache instead of the original one. This means that any
changes you make to Hollywood brush number 1 after the declaration above won’t have any
effect on RapaGUI at all because of its image cache! Please keep that in mind. You either
have to use a brush identifier that is not in RapaGUI’s image cache yet or you have to
remove the brush from RapaGUI’s image cache using the moai.FreeImage() function first.
For listview and treeview widgets, it’s also possible to use moai.UpdateImage() instead.

There is just one exception to the rule: Widgets derived from Image class don’t cache any
image data, although they deal with Hollywood brushes/icons as well. The reason for this

Chapter 3: Conceptual overview 31

is that image widgets often display pretty large images that could also be animated or
changed many times. That’s why it doesn’t make sense to cache image data for widgets
derived from Image class. Images used in other widgets, e.g. buttons, toolbar buttons,
listviews, treeviews, pageviews, are usually very small and there is usually just a fixed
number of them. On top of that, they might be needed very often - just think of a listview
with thousands of rows and an icon in each of those rows - which is why an image cache is
really necessary here to guarantee a good performance.

3.21 Platform-dependent features

Generally speaking, RapaGUI tries to include as few platform-dependent features as possible
to allow the same application to run on a wide variety of platforms without any adjust-
ments. There are, however, very few attributes and methods that, although not available on
all platforms, are still included because they were considered so important that they have
been included although they somewhat contradict RapaGUI’s platform-blind GUI toolkit
approach. For example, the Window.HideFromTaskBar attribute is only available on Win-
dows and GTK+ since there is no taskbar on AmigaOS and macOS. Another example is
Application.OpenConfigWindow which is only available on AmigaOS and compatibles.

Features which are platform-specific are always documented as such. You just need to
look into the documentation to see if a certain feature is platform-specific. To minimize
platform-specific code, all platform-dependent features can be specified on all platforms
supported by RapaGUI as well. RapaGUI will just ignore the attributes and methods then
instead of reporting an error message. Thus, you could also set Window.HideFromTaskBar
on AmigaOS and macOS. RapaGUI won’t report an error message. The call will simply be
ignored.

3.22 MUI Royale compatibility

RapaGUI started as a fork of the popular MUI Royale plugin for Hollywood and people
familiar with MUI Royale will no doubt see that RapaGUI shares the very same design so
porting applications from MUI Royale to RapaGUI isn’t particularly difficult. Although
there have been many semantic changes to abstract RapaGUI from AmigaOS-based termi-
nology, the real design differences are actually very few. Thus, when porting applications
from MUI Royale to RapaGUI most of the time you will just be busy with changing names.
Most people probably won’t even encounter one of the very few design differences between
MUI Royale and RapaGUI. Still, here is a non-exhaustive list of design differences between
MUI Royale and RapaGUI to simplify your porting endeavours:

− MUI Royale required you to handle Window.CloseRequest for all your windows or they
would stay open. RapaGUI automatically closes windows that haven’t got a listener
for Window.CloseRequest installed.

− MUI Royale also required you to handle the "HideWindow" and "ShowWindow" events
to allow the minimizing of windows. RapaGUI handles this automatically now.

− RapaGUI automatically sets up event handlers for buttons, toolbar buttons and menu
items. MUI Royale required you to explicitly request them but this led to unnecessarily
wordy XML files where you had to include something like notify="pressed" for each
and every button because under normal circumstances you want to be notified about

32 RapaGUI manual

each button click. RapaGUI automatically calls your event handler for all button and
toolbar button clicks and menu item events now to make the XML more readable.

− RapaGUI automatically hides all Hollywood displays on startup whereas MUI Royale
doesn’t do this. On MUI Royale you manually have to declare the default display as
hidden.

− MUI Royale allows you to use text formatting codes almost everywhere. Since this is a
highly MUI-centric feature, this is impossible to implement in a platform independent
way. RapaGUI supports text formatting only in its Textview and Texteditor classes
and only if Textview.Styled and Texteditor.Styled have been set to True.

− MUI Royale also allowed you to include icons in almost all widgets via text formatting
codes. This is also impossible to implement in a cross-platform way. Still, RapaGUI has
icon support in many classes but the way this is implemented is always class dependent.
On RapaGUI you can use icons with the following classes: Button class, Listview class,
Pageview class, and Treeview class. Check out the documentation of these classes to
learn more about how to use icons with them.

− MUI Royale requires you to use an object derived from <virtgroup> class as the child
for <scrollgroup> objects. On RapaGUI you can just use normal groups.

− MUI Royale sends context menu events using the Area.ContextMenuTrigger attribute.
RapaGUI simply sends context menu events as normal menu item events but it includes
a Parent field in the event message to inform you about the widget whose context menu
triggered the event.

− RapaGUI’s Checkbox class class creates a checkbox and a text label. MUI Royale’s
checkmark class simply creates a checkbox image and you have to create the label
yourself.

− RapaGUI doesn’t have support for the Listview.InsertPosition attribute but its
Listview.Insert method simply returns the position of the newly inserted entry.

− In MUI Royale text editor ranges were indicated by block coordinates consisting of four
different values (x1, y1, x2, y2). RapaGUI just uses start and stop coordinates now,
so all the methods and attributes that deal with text ranges just require/return two
arguments now.

− RapaGUI’s Texteditor class, Textview class, and Textentry class use the content be-
tween the opening and closing XML tags as the initial widget contents whereas MUI
Royale always required you to use an attribute to set the initial contents.

− RapaGUI requires you to specify a parent object most of the times when creating ob-
jects dynamically using moai.CreateObject(). This wasn’t necessary in MUI Royale.

− Since RapaGUI’s Treeview class supports multiple columns, you have to create at least
one <column> when declaring your treeview in XML. This wasn’t needed with MUI
Royale because its treeview class merely supports single column trees.

− MUI Royale doesn’t have the concept of dialogs since AmigaOS doesn’t have it either.
Modal dialogs were just emulated using normal windows and putting all other windows
to sleep. RapaGUI now introduces real dialogs. While with MUI Royale you would
typically create all those pseudo-dialogs at startup, this is no longer recommended
with RapaGUI. Since windows are quite a finite resource on some operating systems,
you should create dialogs only when you need them and destroy them immediately

Chapter 3: Conceptual overview 33

afterwards. See Section 16.1 [Dialog class], page 95, for details. If you only target
AmigaOS, then you can of course still create all your windows with just a single call
to moai.CreateApp() but if you want to target other operating systems as well, you
should follow the recommended programming guidelines and create dialogs when you
need them and destroy them as soon as you are finished with them.

− Objects of Radio class are always framed in RapaGUI. In MUI Royale they aren’t
framed by default.

− When using a somewhat more complex shortcut string like CTRL+V, Alt+X or F5 with
Menuitem.CommandString, MUI Royale doesn’t automatically listen to it. This has to
be implemented manually. Only standard shortcuts in the form of a single alphabetical
key combined with the CMD key are handled automatically by MUI Royale. RapaGUI,
however, automatically handles complex shortcuts as well.

− When getting Listview.Active and no entry is active, MUI Royale returns the special
string Off whereas RapaGUI returns -1.

Of course, there are also many attributes and methods that are present in MUI Royale
but missing in RapaGUI. The reason for this is of course that because of its cross-platform
design RapaGUI represents the lowest common denominator between Windows, Linux,
macOS, and AmigaOS. That’s why not all MUI Royale features could be transferred to
RapaGUI.

35

4 Tutorial

4.1 Tutorial

Welcome to the RapaGUI tutorial! This small step-by-step document will guide you through
the process of creating your first GUI with RapaGUI in very few steps. We will create a
little GUI application that consists of a listview, a text entry widget, and two buttons. The
two buttons should be programmed to allow the addition and removal of items from the
listview. The data to be inserted into the listview should be taken from the text entry
widget. Here is what this little application looks like on Windows:

Let us start with the basics: In RapaGUI GUIs are created using XML files that contain a
description of a number of windows containing a variety of GUI elements. Here is a minimal
GUI description for a RapaGUI GUI that contains a window with a listview, a text entry
widget, and two buttons in XML format:

<?xml version="1.0" encoding="iso-8859-1"?>

<application>

<window title="Example GUI">

<vgroup>

<listview>

<column/>

</listview>

<textentry/>

<hgroup>

<button id="add">Add</button>

<button id="rem">Remove</button>

</hgroup>

</vgroup>

</window>

</application>

The <application> object is the master MOAI object for every application and must only
be used once per application. All other MOAI objects are children of Application class.
The root element of every <window> object must be derived from Group class, i.e. it must

36 RapaGUI manual

be either <vgroup>, <hgroup>, or <colgroup>. Also note that there must be only one root
element per window.

To see how our XML declaration above looks as a GUI, we have to save it to a file named
GUI.xml and then use the following code to make RapaGUI convert it to a native GUI for
the operating system Hollywood is running on:

@REQUIRE "RapaGUI"

moai.CreateApp(FileToString("GUI.xml"))

Repeat

WaitEvent

Forever

Next you should add some information about your program using the @APPAUTHOR,
@APPCOPYRIGHT, @APPDESCRIPTION, @APPTITLE, and @APPVERSION preprocessor commands.
RapaGUI needs this information for several purposes, e.g. the information passed in
@APPTITLE is used by the MUI preferences window on AmigaOS and compatibles. Here is
an example declaration of these preprocessor commands:

@APPTITLE "Tutorial"

@APPVERSION "$VER: Tutorial 1.0 (29.12.15)"

@APPCOPYRIGHT "Copyright c©2015, Andreas Falkenhahn"

@APPAUTHOR "Andreas Falkenhahn"

@APPDESCRIPTION "The tutorial app from the RapaGUI guide"

The next thing we have to do is install an event handler callback using the
InstallEventHandler() Hollywood function because our Hollywood script needs to be
informed every time a RapaGUI event comes in. Thus, we have to modify our code as
follows:

@REQUIRE "RapaGUI"

Function p_EventFunc(msg)

; contents follow below

EndFunction

InstallEventHandler({RapaGUI = p_EventFunc})

moai.CreateApp(FileToString("GUI.xml"))

Repeat

WaitEvent

Forever

What we have done here is installing the function p_EventFunc as an event handler callback
that gets executed whenever a RapaGUI event comes in. When we get such an event, we
then have to check which MOAI class and attribute has triggered it. This is done by looking
into the msg.Class and msg.Attribute fields of the event message that our callback receives
as its first parameter.

The next thing we want to do is add the functionality that whenever the user presses the
"Add" button the text in the text entry widget should get added to the listview as the last

Chapter 4: Tutorial 37

entry. To do this, we first have to find a way of identifying our widgets from the Hollywood
script. This is done by giving them IDs in the XML declaration. IDs are simply text strings
that are used for talking to MOAI objects from Hollywood scripts. So let’s add some IDs
now for all widgets that we need to talk to. We have to modify our XML declaration like
this:

...

<listview id="mylistview">

<column/>

</listview>

<textentry id="mystring"/>

<hgroup>

<button id="mybt1">Add</button>

<button id="mybt2">Remove</button>

</hgroup>

...

Now that we have done this we can add some code to our event handler callback that grabs
the contents of the text entry widget and adds it to the end of the list in our listview
object. This is done by first calling moai.Get() on the Textentry.Text attribute to get
the contents of the string widget and then running the method Listview.Insert on the
listview widget using moai.DoMethod() to insert the entry into the listview. Here is the
code that has to be inserted into p_EventFunc for this purpose:

Switch msg.Class

...

Case "Button":

Switch msg.Attribute

Case "Pressed":

Switch msg.ID

Case "mybt1": ; "Add" button was pressed

Local s$ = moai.Get("mystring", "text")

moai.DoMethod("mylistview", "insert", "bottom", s$)

EndSwitch

EndSwitch

EndSwitch

The next thing we want to do is implement the functionality of our "Remove" button.
Whenever this button is pressed, we want the active entry to be removed from the listview.
We can do this by running the Listview.Remove method on the listview. Hence, we have
to modify our code like this:

Switch msg.ID

...

Case "mybt2": ; "Remove" button was pressed

moai.DoMethod("mylistview", "remove", "active")

EndSwitch

Now we want the active entry of the listview to be automatically displayed in the text
entry widget. For this purpose we have to set up a notification on the Listview.Active

attribute which is triggered whenever the active entry of the listview changes. Thus, we
have to modify our XML file like this:

38 RapaGUI manual

...

<listview id="mylistview" notify="active">

<column/>

</listview>

...

In our event handler callback we can implement this functionality quite easily by running
the Listview.GetEntry method and then setting the text entry widgets contents using the
Textentry.Text attribute. Here is the code for doing that:

Switch msg.Class

...

Case "Listview":

Switch msg.Attribute

Case "Active":

Local s$ = moai.DoMethod("mylistview", "getentry", "active")

moai.Set("mystring", "text", s$)

EndSwitch

EndSwitch

If you try this code, you will set that the Listview.Active attribute is not only triggered
when the user selects a new listview entry with his mouse, but also when entries are removed
from the listview and thus cause a new entry becoming the active one.

The next thing we want to do is disable the "Remove" button when there is no active entry
in the listview. We can disable widgets by setting the Area.Disabled attribute to True. As
there are no entries in the listview initially, we have to set Area.Disabled to True already
at the start of our program. So you have to insert this code:

...

moai.CreateApp(FileToString("GUI.xml"))

moai.Set("mybt2", "disabled", True)

...

Now we have to make some modifications to our event handler callback. Whenever we get
the notification on Listview.Active we have to check if it is different from the special value
"Off". If that is the case, we will enable the "Remove" button. The special value "Off"
(-1) is returned by Listview.Active whenever there is no active entry in the listview. We
have to modify our code like this:

Switch msg.Class

...

Case "Listview":

Switch msg.Attribute

Case "Active":

Local s$ = moai.DoMethod("mylistview", "getentry", "active")

moai.Set("mystring", "text", s$)

moai.Set("mybt2", "disabled", IIf(msg.triggervalue = -1,

True, False))

EndSwitch

EndSwitch

Chapter 4: Tutorial 39

We use the field msg.TriggerValue here. This always contains the current value of the
attribute that has triggered the event, i.e. in our case it contains the current value of the
Listview.Active attribute. We could also call moai.Get() manually on Listview.Active

first, but this is not really required because we can simply use the msg.TriggerValue

shortcut.

The last thing we want to do is add a menu to our GUI. All RapaGUI programs should have a
menu item informs the user that this program was done using RapaGUI. You can popup the
this dialog by running the Application.AboutRapaGUI method on the application object.
To add this menu to our program, we use Menubar class. Here is the XML code that you
have to add before your window declaration:

...

<application>

<menubar id="mymenubar">

<menu title="File">

<item id="menabout">About...</item>

<item id="menaboutrapagui">About RapaGUI...</item>

<item/>

<item id="menquit">Quit</item>

</menu>

</menubar>

...

</application>

After we have created our menubar object using the XML code above we have to attach
this menubar to our window. This is done by setting the Window.Menubar attribute to our
menubar object. Here is the XML code for this:

<window title="Example GUI" menubar="mymenubar">

Now we have to add code to our event handler function that takes the appropriate action
when a menu item is selected. Before we can do that, however, we need to assign an ID
to our application object because we need to use moai.DoMethod() on it. Here is how the
XML code needs to be adapted:

<application id="app">

Now we can write the code for our event handler callback function that handles menu items:

Switch msg.Class

...

Case "Menuitem":

Switch msg.Attribute

Case "Selected":

Switch msg.id

Case "menabout":

moai.Request("Test", "Test program\n" ..

" c© 2015 by Andreas Falkenhahn", "OK")

Case "menaboutrapagui":

moai.DoMethod("app", "aboutrapagui")

Case "menquit":

End

40 RapaGUI manual

EndSwitch

EndSwitch

EndSwitch

Some final touches to our program could be adding online help to our widgets by using the
Area.Tooltip and Menuitem.Help attributes, adding a status bar, and adding keyboard
shortcuts for the menu items using the underscore character. These changes are left as an
exercise for the reader.

So here is what our final program looks like. First the XML file:

<?xml version="1.0" encoding="iso-8859-1"?>

<application id="app">

<menubar id="mymenubar">

<menu title="File">

<item id="menabout">About...</item>

<item id="menaboutrapagui">

About RapaGUI...</item>

<item/>

<item id="menquit">Quit</item>

</menu>

</menubar>

<window title="Example GUI" menubar="mymenubar">

<vgroup>

<listview id="mylistview" notify="active">

<column/>

</listview>

<textentry id="mystring"/>

<hgroup>

<button id="mybt1">Add</button>

<button id="mybt2">Remove</button>

</hgroup>

</vgroup>

</window>

</application>

And here is the code for the program logic:

@REQUIRE "RapaGUI"

@APPTITLE "Tutorial"

@APPVERSION "$VER: Tutorial 1.0 (29.12.15)"

@APPCOPYRIGHT "Copyright c©2015, Andreas Falkenhahn"

@APPAUTHOR "Andreas Falkenhahn"

@APPDESCRIPTION "The tutorial app from the RapaGUI guide"

Function p_EventFunc(msg)

Switch msg.Class

Case "Button":

Switch msg.Attribute

41

Case "Pressed":

Switch msg.ID

Case "mybt1": ; "Add" button was pressed

Local s$ = moai.Get("mystring", "text")

moai.DoMethod("mylistview", "insert", "bottom", s$)

Case "mybt2": ; "Remove" button was pressed

moai.DoMethod("mylistview", "remove", "active")

EndSwitch

EndSwitch

Case "Listview":

Switch msg.Attribute

Case "Active":

Local s$ = moai.DoMethod("mylistview", "getentry", "active")

moai.Set("mystring", "text", s$)

moai.Set("mybt2", "disabled", IIf(msg.triggervalue = -1,

True, False))

EndSwitch

Case "Menuitem":

Switch msg.Attribute

Case "Selected":

Switch msg.id

Case "menabout":

moai.Request("Test", "Test program\n" ..

" c© 2015 by Andreas Falkenhahn", "OK")

Case "menaboutrapagui":

moai.DoMethod("app", "aboutrapagui")

Case "menquit":

End

EndSwitch

EndSwitch

EndSwitch

EndFunction

InstallEventHandler({RapaGUI = p_EventFunc})

moai.CreateApp(FileToString("GUI.xml"))

moai.Set("mybt2", "disabled", True)

Repeat

WaitEvent

Forever

That’s it! Now you should be able to create fantastic new GUI programs with Hollywood
and RapaGUI. Thank you for reading this tutorial and enjoy the power of modern GUI
programming with Hollywood and RapaGUI at your hands!

43

5 Examples

5.1 Examples

RapaGUI comes with a number of examples that demonstrate certain features and should
allow you to get started really quickly. Here’s a list of examples that are distributed with
RapaGUI:

Accelerators
Shows how to set up an accelerator table for advanced keyboard control of your
GUI. See Section 7.1 [Accelerator class], page 57, for details.

Demo An extensive showcase of most of the widgets supported by RapaGUI. Take a
look at this example to see how the different MOAI classes offered by RapaGUI
appear as widgets.

Dialogs Shows how to use modal dialogs with RapaGUI. This example demonstrates
both function-driven dialogs as well as normal modal dialogs. See Section 16.1
[Dialog class], page 95, for details.

DragNDrop
Shows how to implement drag’n’drop using RapaGUI.

Dynamic1 Demonstrates how to create new windows at runtime.

Dynamic2 Demonstrates how to create new buttons at runtime.

Dynamic3 Demonstrates how to create new tabs for Pageview class at runtime. See
Section 34.1 [Pageview class], page 189, for details.

Dynamic4 Demonstrates how to create menus and menu items at runtime.

HTMLView
This is a rudimentary Internet browser written in RapaGUI and Hollywood. It
demonstrates HTMLview class. See Section 23.1 [HTMLview class], page 129,
for details.

Image This example shows how to embed a Hollywood brush inside your GUI using
Image class. See Section 25.1 [Image class], page 135, for details.

MultiDisplays
Demonstrates how to embed four different Hollywood displays inside a single
RapaGUI window. This shows the magic that is possible when combining
Hollywood and RapaGUI. See Section 20.1 [Hollywood class], page 121, for
details.

Pages Shows how to create a window with tabbed groups using a Pageview class MOAI
object. See Section 34.1 [Pageview class], page 189, for details.

Scrollbar Demonstrates how to attach a scrollbar created using Scrollbar class to a
custom-drawn widget. See Section 42.1 [Scrollbar class], page 211, for details.
Alternatively, you can also use Scrollcanvas class to achieve the same thing. See
below for an example.

44 RapaGUI manual

Scrollcanvas
This example demonstrates another way of using scrollbars and widgets with
custom graphics in RapaGUI. This time Scrollcanvas class is used to See
Section 43.1 [Scrollcanvas class], page 215, for details. The same thing is also
possible by using Scrollbar class. See above for an example.

ShowHide Shows how to show and hide MOAI objects at runtime by setting the Area.Hide
attribute.

SongPlayer
This is an audio file player written in RapaGUI.

TextEditor
A little text editor written in Hollywood. It also demonstrates how to use a
toolbar and a status bar.

Treeview Demonstrates how to create a multi-column treeview in RapaGUI using Tree-
view class. See Section 54.1 [Treeview class], page 263, for details.

VideoPlayer
This is a video player written in RapaGUI. It shows how to embed a Hollywood
display inside a RapaGUI window using Hollywood class. See Section 20.1
[Hollywood class], page 121, for details. Furthermore, it also demonstrates how
to use image buttons, a listview with images and slider objects.

45

6 Function reference

6.1 moai.CreateApp

NAME
moai.CreateApp – create application object from an XML source

SYNOPSIS
moai.CreateApp(xml$)

FUNCTION
This function creates an application from the XML description passed in the xml$ argu-
ment. Please note that xml$ must be a string that contains the XML GUI declaration
and not a filename. If you want to use an XML GUI declaration from an external file,
you have to convert that file into a string first, e.g. using the FileToString() Hollywood
function.

Once this function returns, you can talk to all your MOAI objects that you have defined
in the XML GUI declaration using the moai.Set(), moai.Get() and moai.DoMethod()

functions.

Please note that there can be only one application object per task so this function can
only be called once. If you want to call moai.CreateApp() a second time, you have to
free the old GUI first using the moai.FreeApp() call.

If you need to dynamically add objects like windows or buttons to your application
object, you can use the moai.CreateObject() function to do this. For dialogs you can
use the moai.CreateDialog() function.

INPUTS

xml$ a string containing an XML GUI description

EXAMPLE
moai.CreateApp([[

<?xml version="1.0" encoding="iso-8859-1"?>

<application>

<window title="Test program">

<vgroup>

<button id="btn">Hello World!</button>

</vgroup>

</window>

</application>

]])

InstallEventHandler({RapaGUI = Function(msg)

If msg.attribute = "Pressed" Then DebugPrint("Button pressed!")

EndFunction})

Repeat

WaitEvent

46 RapaGUI manual

Forever

The code above creates a minimal GUI, just with a window and a single button.

6.2 moai.CreateDialog

NAME
moai.CreateDialog – create dialog object from an XML source

SYNOPSIS
moai.CreateDialog(xml$[, parent$])

FUNCTION
This function can be used to dynamically create a dialog object from an XML source.
The newly created dialog object will also be automatically attached to your application
so that it is ready for instant use. You should also specify a parent window for your
dialog using the optional argument.

moai.CreateDialog() is very important because you should create dialogs only when
you need them and destroy them as soon as you are finished with them. It is not advised
to create all your dialogs on startup using moai.CreateApp() and keep them in memory
all the time. Instead, you should use this function to create a dialog when you need it
and then have it destroyed as soon as you are finished with it. The reason for this is that
windows are quite a finite resource on some operating systems supported by RapaGUI.
For example, on Windows there is a limit of about 10,000 windows per process. That
might sound like sufficiently enough but keep in mind that on Windows every widget is
a "window" for the operating system, e.g. every label, button, frame, checkbox, group,
etc. in your application is a window so you should take care that you create your dialogs
only as needed using moai.CreateDialog() and destroy them right afterwards.

In practice, it is advised to create a separate XML file for each of your dialogs and then
use this function to convert the XML file into a dialog at runtime and have the dialog
destroyed automatically by RapaGUI as soon as the user closes it.

Technically speaking, this function is just a convenience function which internally calls
moai.CreateObject() and then adds the newly created object to the application object
by calling Application.AddWindow. moai.CreateDialog() simply combines these two
steps into one.

See Section 16.1 [Dialog class], page 95, for more information on dialogs.

INPUTS

xml$ a string containing an XML MOAI dialog description

parent$ optional: desired parent for the dialog object; see above for details

EXAMPLE
moai.CreateDialog([[

<dialog id="dlg" title="Question">

<vgroup>

<text>What is your name?</text>

<textentry/>

Chapter 6: Function reference 47

<hgroup>

<button id="ok">OK</button>

<button id="cancel">Cancel</button>

</hgroup>

</vgroup>

</dialog>

]])

moai.DoMethod("dlg", "showmodal")

The code above creates a new dialog and shows it.

6.3 moai.CreateObject

NAME
moai.CreateObject – create MOAI object from an XML source

SYNOPSIS
moai.CreateObject(xml$[, parent$])

FUNCTION
This function can be used to dynamically create a MOAI object from an XML source.
When moai.CreateObject() returns, the newly created MOAI object won’t be at-
tached to any parent object and will live in a state of isolation from your applica-
tion object created by moai.CreateApp(). Thus, to break this state of isolation you
first have to attach the object to a parent object which can be either a group ob-
ject, a menu object, or an application object. If your newly allocated MOAI object
is a window object, you will have to to attach it to the application object by using
the Application.AddWindow method. To attach menu objects you have to use the
Menubar.Prepend, Menubar.Append, Menubar.Insert, Menu.Prepend, Menu.Append, or
Menu.Insert methods. All other objects can be attached by using the group methods
Group.Prepend, Group.Append and Group.Insert.

For most MOAI classes you have to specify a parent object in the second parameter.
RapaGUI won’t attach the new object to the parent but it still needs to know the parent
for determining certain settings. The only MOAI classes which do not require you to
specify a parent object are the following:

− Window class

− Dialog class

− Menubar class

− Menu class

− Menuitem class

All other MOAI classes require you to specify the identifier of the parent object.

Normally, you just have to pass the identifier of the window that you want to attach
the MOAI object to as the parent. There is one exception: If you plan to add the
MOAI object to a group with a frame, i.e. an instance of Group class with Group.Frame

set to True, then you have to pass this group object as the parent. Note that this

48 RapaGUI manual

only applies to groups with a frame. If you plan to add the MOAI object to a normal
group that doesn’t have a frame, you just have to pass the identifier of the window to
moai.CreateObject(). Note, though, that in case the normal group is itself just a child
embedded somewhere in the hierarchy of a framed group, then you have to pass the
identifier of the framed group. Also, when adding objects to scrollgroups, you need to
pass the scrollgroup as the parent.

To put it in abstract terms: The parent must be set to the next object in the layout
hierarchy that has a visual representation. Normal groups are just layout tools, they
don’t exist as widgets. Framed groups, however, are layout tools but they are also widgets
since they have a visual representation. Thus, if your object is going to be embedded
somewhere in a framed group, the framed group must be passed as the parent. If it
is embedded in a normal group, then the top-level window must be the parent. Don’t
forget to think in hierarchies: Even if you want to attach your object to a normal group
it could still be the case that the normal group is itself embedded in a framed group
which means that you would still have to pass the framed group as the parent. The
same applies to scrollgroups since they also have a visual representation.

In contrast to moai.CreateApp() you can call moai.CreateObject() as often as you
like as it doesn’t create an application object for you but just detached MOAI objects
of which you can have as many as you like.

It is important that you specify an ID for your MOAI object in the XML declaration
because you need this ID to refer to this object when you want to add it to an application,
menu or group object.

Once this function returns, you can talk to the newly created MOAI object (and to all
of its children) using the moai.Set(), moai.Get() and moai.DoMethod() functions.

Detached MOAI objects can be freed using the moai.FreeObject() function but you
only have to call this in specific cases, e.g. if you are dealing with lots of dynamically
allocated MOAI objects and you want to do some housekeeping to save on memory and
resources.

INPUTS

xml$ a string containing an XML MOAI object description

parent$ optional: desired parent for the object; see above for details

EXAMPLE
moai.CreateObject([[

<window id="newwindow" title="A new window">

<vgroup>

<button id="btn">Hello World!</button>

</vgroup>

</window>

]])

moai.DoMethod("app", "addwindow", "newwindow")

moai.Set("newwindow", "open", True)

The code above creates a new window, adds it to the existing application object and
opens it.

Chapter 6: Function reference 49

moai.CreateObject([[

<button id="newbutton">Dynamically created button!</button>

]], "mywindow")

moai.DoMethod("mygroup", "initchange")

moai.DoMethod("mygroup", "append", "newbutton")

moai.DoMethod("mygroup", "exitchange", false)

The code above dynamically creates a new button object and adds it as the last child to
the group that has the ID "mygroup".

6.4 moai.DoMethod

NAME
moai.DoMethod – run method on MOAI object

SYNOPSIS
r = moai.DoMethod(id$, method$, ...)

FUNCTION
This function can be used to run a method on the specified MOAI object. You have to
pass the identifier of the MOAI object in the first argument and the name of the method
in the second argument. Method and object IDs are case insensitive, i.e. it does not
matter if you use upper or lower case characters.

The methods that you can use with this function depend on the class of the specified
MOAI object. Have a look at the class reference to see what methods are supported by
the different MOAI classes.

Also, the arguments that you have to pass to this function after the method name depend
on the method. They are different for every method. The same is true for return values.
Some methods return values, some do not. Please refer to the class reference to see which
arguments your method requires and whether there are return values for your method.

INPUTS

id$ identifier of MOAI object to run method on

method$ method name as a string

... additional arguments depend on the method (see class reference for details)

RESULTS

r return value depends on method type

EXAMPLE
moai.DoMethod("my_listview", "insert", "bottom", "Last entry")

The code above adds a new entry named "Last entry" to the bottom of the listview using
the identifier "my listview". This is done by running the Listview.Insert method on
the listview object.

50 RapaGUI manual

6.5 moai.FreeApp

NAME
moai.FreeApp – delete entire application object

SYNOPSIS
moai.FreeApp()

FUNCTION
Use this call to delete the entire application object created using the last call to
moai.CreateApp(). moai.FreeApp() will delete the whole application object and all of
the children attached to it. After this call returns, you could create a new application
using the moai.CreateApp() function if you want.

Note that moai.FreeApp() won’t free MOAI objects which are currently in a detached
state. Those have to be freed by using moai.FreeObject().

INPUTS
none

6.6 moai.FreeDialog

NAME
moai.FreeDialog – delete a dialog object

SYNOPSIS
moai.FreeDialog(id$)

FUNCTION
This function can be used to delete a dialog object created by moai.CreateDialog().
Normally, it isn’t necessary to call this function because dialogs are automatically de-
stroyed by Dialog.EndModal or when the dialog function returns. If you need fine-tuned
control over dialog destruction, you can use this function, though.

moai.FreeDialog() will first detach the dialog from the application object and
then free it. So technically speaking, this function is just a convenience function
which internally removes the dialog object from the application object by calling
Application.RemoveWindow and then calls moai.FreeObject() to free the dialog
object. moai.FreeDialog() simply combines these two steps into one.

See Section 16.1 [Dialog class], page 95, for more information on dialogs.

INPUTS

id$ identifier of dialog object to free

6.7 moai.FreeImage

NAME
moai.FreeImage – free image in cache (V1.2)

SYNOPSIS
moai.FreeImage(id[, isicon])

Chapter 6: Function reference 51

FUNCTION
This function can be used to free an image in RapaGUI’s internal cache. You have to pass
the identifier of the image that should be freed in id. If the optional isicon argument
is set to True, id must be the identifier of a Hollywood icon to free. Otherwise, id must
be the identifier of a Hollywood brush that should be freed. Alternatively, you can also
pass -1 in id to free all images in RapaGUI’s internal cache.

You must make sure that the specified image is no longer used by any widgets in your GUI
before you call this function. Note that under normal conditions it is not necessary to call
this function because normally all cached images are freed automatically by RapaGUI.
Under certain conditions, however, it can be useful to call this function.

RapaGUI caches all images that you use in your GUI. That is why when you try to
use a certain image in your GUI a second time, it will just be loaded from RapaGUI’s
internal image cache for performance reasons. This can lead to unwanted behaviour in
case you have updated your image’s graphics in the meantime and you want RapaGUI
to use the updated graphics. In that case, you first have to free the image in RapaGUI’s
internal image cache by using this function. When you pass the image to RapaGUI again
then, it will be re-created from the image’s current contents and it will be cached anew.
For listview and treeview widgets, you can also use moai.UpdateImage() to update the
graphics data of an image.

See Section 3.20 [Image cache], page 30, for details.

INPUTS

id identifier of image to free or -1 to free all images

isicon optional: True if id contains the identifier of an icon, False if it contains
the identifier of a brush (defaults to False) (V2.0)

6.8 moai.FreeObject

NAME
moai.FreeObject – delete a detached MOAI object

SYNOPSIS
moai.FreeObject(id$)

FUNCTION
This function can be used to delete a detached MOAI object that has been created
either by moai.CreateObject() or moai.CreateApp(). The MOAI object that you
specify here must not be attached to an application, group, or menu object any longer
because attached MOAI objects are freed with their parent so make sure you only use
this function with MOAI objects that have been detached from their parent and are no
longer bound to any parent object.

To detach MOAI objects from their respective parents, you have to use one of the
following methods: Application.RemoveWindow, Menubar.Remove, Menu.Remove or
Group.Remove.

When RapaGUI exits, it will automatically free all detached MOAI objects so unless
your program constantly adds and removes MOAI objects at runtime, you will normally
not have to call this function at all.

52 RapaGUI manual

INPUTS

id$ identifier of MOAI object to free

6.9 moai.Get

NAME
moai.Get – get value of a MOAI object attribute

SYNOPSIS
r = moai.Get(id$, attr$)

FUNCTION
This function can be used to retrieve the current value of the attribute attr$ in the
MOAI object specified in id$. Attribute names and object IDs are case insensitive, i.e.
it does not matter if you use upper or lower case characters for them.

The attributes that you can use with this function depend on the class of the specified
MOAI object. Have a look at the class reference to see what attributes are supported by
the different MOAI classes. In order to use an attribute with this function, it needs to
have an applicability of "G". Attributes of Area class and MOAI class can be used on
almost all other classes because the Area and MOAI classes act as superclasses for most
of the other classes.

INPUTS

id$ identifier of MOAI object to query

attr$ attribute whose value should be retrieved

RESULTS

r current attribute value

EXAMPLE
DebugPrint(moai.Get("my_listview", "active"))

The code above returns the index of the currently active entry in the listview that has
the identifier "my listview" by querying the Listview.Active attribute.

6.10 moai.HaveObject

NAME
moai.HaveObject – check if MOAI object exists

SYNOPSIS
r = moai.HaveObject(id$)

FUNCTION
This function simply checks whether a MOAI object of the given id$ exists or not. If it
exists, True is returned, False otherwise.

INPUTS

id$ MOAI object id to check

Chapter 6: Function reference 53

RESULTS

r True or False depending on whether the object exists

6.11 moai.Notify

NAME
moai.Notify – add/remove notification on a MOAI object attribute

SYNOPSIS
moai.Notify(id$, attr$, enable)

FUNCTION
This function can be used to add or remove a notification on the attribute attr$ in
the MOAI object specified in id$. You have to pass the attribute name and a boolean
flag that indicates whether you want to enable or disable notifications on that attribute.
Attribute names and object IDs are case insensitive, i.e. it does not matter if you use
upper or lower case characters for them.

The attributes that you can use with this function depend on the class of the specified
MOAI object. Have a look at the class reference to see what attributes are supported by
the different MOAI classes. In order to use an attribute with this function, it needs to
have an applicability of "N". Attributes of Area class and MOAI class can be used on
almost all other classes because the Area and MOAI classes act as superclasses for most
of the other classes.

Once you have setup a notification on a certain object attribute, you can
listen to these events by installing a RapaGUI event handler callback using the
InstallEventHandler() Hollywood function. See Section 3.7 [Notifications], page 13,
for details.

Please note that notifications can also be setup in the XML GUI declaration by using
the Notify attribute. See Section 3.7 [Notifications], page 13, for details.

INPUTS

id$ identifier of MOAI object to use

attr$ attribute to listen to

enable True to add a notification or False to remove notification from this object

EXAMPLE
moai.Notify("my_listview", "active", True)

The code above installs a notification that triggers whenever the Listview.Active at-
tribute changes in the listview that has the identifier "my listview".

6.12 moai.Request

NAME
moai.Request – show a system requester

54 RapaGUI manual

SYNOPSIS
r = moai.Request(title$, body$, buts$[, icon$])

FUNCTION
This function pops up a standard system requester that displays a message (body$) and
also allows the user to make a selection using one of the buttons specified by buts$.
Optionally, you can also specify an icon that should be displayed in the requester. If
you specify an empty string in title$, it will automatically use the title specified in
@APPTITLE.

Separate the buttons specified in buts$ by a "|". The return value tells you which
button the user pressed. Please note that the rightmost button always has the value of
False (0) because it is typically used as the "Cancel" button. If you have for example
three button choices "One|Two|Three", the button "Three" has return value 0, "Two"
returns 2, and "One" returns 1.

The optional argument icon$ can be set to one of the following predefined values:

"None": no icon

"Information":

an information sign

"Error": an error sign

"Warning":

a warning sign

"Question":

a question mark

INPUTS

title$ title for the requester; pass an empty string ("") to use the default title

body$ text to appear in the body of the requester

buts$ one or more buttons that the user can press

icon$ optional: icon to show in the requester (defaults to "Information")

RESULTS

r the button that was pressed by the user

EXAMPLE
moai.Request("RapaGUI", "Hello!\n\n" ..

"Do you like RapaGUI!", "Yes|No")

The code above demonstrates the use of the moai.Request() function.

6.13 moai.Set

NAME
moai.Set – set value of a MOAI object attribute

SYNOPSIS
moai.Set(id$, attr1$, val1$, ...)

Chapter 6: Function reference 55

FUNCTION
This function can be used to set the current value of one or more attributes in the MOAI
object specified in id$. You have to pass the attribute name and desired new value for
every attribute you want to modify. You can repeat these attribute/value pairs as often
as you like to modify multiple attributes with just a single call to moai.Set(). Attribute
names and object IDs are case insensitive, i.e. it does not matter if you use upper or
lower case characters for them.

The attributes that you can use with this function depend on the class of the specified
MOAI object. Have a look at the class reference to see what attributes are supported
by the different MOAI classes. In order to use an attribute with this function, it needs
to have an applicability of "S". Attributes of Area class and MOAI class can be used on
almost all other classes because the Area and MOAI classes act as superclasses for most
of the other classes.

If you have setup a notification on the attribute that you want to modify using this
function, the notification will be triggered once you call moai.Set() on that attribute.
If you do not want this behaviour, you can use the MOAI.NoNotify attribute to prevent
a notification from being issued.

INPUTS

id$ identifier of MOAI object to modify

attr1$ attribute whose value should be modified

val1$ new value for the attribute

... you can repeat attribute/value pairs as often as you like

EXAMPLE
moai.Set("my_listview", "active", 15)

The code above sets entry number 15 as currently active entry in the listview that has
the identifier "my listview" by setting the Listview.Active attribute.

moai.Set("my_listview", "nonotify", True, "active", 15)

This code does the same as the code above but prevents notifications from being issued
by setting the MOAI.NoNotify attribute to True. This is useful if you need to distin-
guish between user selections in the listview and selections made programmatically using
moai.Set().

6.14 moai.UpdateImage

NAME
moai.UpdateImage – update cached image (V2.0)

SYNOPSIS
moai.UpdateImage(id[, isicon])

FUNCTION
This function can be used to update the graphics data of an image in RapaGUI’s internal
cache. You have to pass the identifier of the image that should be updated in id. The

56 RapaGUI manual

optional parameter isicon specifies if the cached image is a Hollywood brush or icon.
The new graphics data for the image will also be taken from the Hollywood brush or
icon specified by id.

Note that this function is currently only compatible with listview and treeview widgets.
You cannot use it to update the graphics of icons in other widgets, e.g. icons in a button
widget. After updating the graphics data of an icon in a listview or treeview widget, you
also need to make sure that all rows that use that icon are refreshed. You can do that
by using the Listview.Rename or Treeviewleaf.SetItem methods, for example.

See Section 3.20 [Image cache], page 30, for details.

INPUTS

id identifier of image to be updated

isicon optional: True if id contains the identifier of an icon, False if it contains
the identifier of a brush (defaults to False)

57

7 Accelerator class

7.1 Overview

Accelerator class can be used to set up global keyboard shortcuts for a window. Normal
keyboard shortcuts defined by using the underscore character are handled automatically by
RapaGUI. See Section 3.13 [Keyboard shortcuts], page 21, for details. However, sometimes
you might want to use more complex keyboard shortcuts, e.g. you might want to listen
to the escape key, function keys, certain control keys or key combinations (e.g. CTRL+V for
paste). This is possible by using Accelerator class.

Accelerator class allows you to set up a table of keyboard shortcuts which can then be
assigned to a window by using the Window.Accelerator attribute to make those shortcuts
globally available in the respective window. Each accelerator table must contain at least
one child of type Acceleratoritem class defining a single shortcut.

Here is an example of how to set up an accelerator table in XML:

<accelerator>

<item id="ac_cut" mod="ctrl">X</item>

<item id="ac_copy" mod="ctrl">C</item>

<item id="ac_paste" mod="ctrl">V</item>

<item id="ac_f1">F1</item>

</accelerator>

The accelerator table declared above sets up four different shortcuts: CTRL+X, CTRL+C,
CTRL+V and F1. Whenever the user presses such a key or key combination, the
Acceleratoritem.Pressed notification will be triggered and your application can then
react on it.

Note that if you intend to link your accelerator items to menu items, you don’t have to use
Accelerator class at all. In that case you can just use the Menuitem.Shortcut attribute to
set up shortcuts for your menu items. Accelerator class is really only necessary if you need
to listen to keyboard events without having any menu items involved.

Accelerator class doesn’t define any attributes or methods itself. See Section 8.1 [Accelera-
toritem class], page 59, for all necessary information.

59

8 Acceleratoritem class

8.1 Overview

Acceleratoritem class is used to create an individual keyboard shortcut as part of an acceler-
ator table for Accelerator class. You cannot create independent instances of Acceleratoritem
class. They always need to be embedded inside Accelerator class. See Section 7.1 [Acceler-
ator class], page 57, for details.

The following keys can currently be specified when creating an accelerator item using the
<item> XML tag:

UP Cursor up

DOWN Cursor down

RIGHT Cursor right

LEFT Cursor left

HELP Help key

DEL Delete key

BACKSPACE

Backspace key

TAB Tab key

RETURN Return key

ENTER Enter key

ESC Escape

SPACE Space key

F1 - F16 Function keys

INSERT Insert key

HOME Home key

END End key

PAGEUP Page up key

PAGEDOWN Page down key

PRINT Print key

PAUSE Pause key

Furthermore, Acceleratoritem class supports the English alphabet characters from A to Z
as well as the numbers 0 to 9 as key specifications. It doesn’t matter whether you specify
all these keys in upper, lower or mixed case. See Section 7.1 [Accelerator class], page 57,
for an example.

60 RapaGUI manual

8.2 Acceleratoritem.Mod

NAME
Acceleratoritem.Mod – set modifier key(s)

FUNCTION
This attribute allows you to specify the modifier key(s) for this accelerator item. This
can be a combination of the following predefined values:

None Don’t use any modifier key. This is the default.

Ctrl Add the control key to the modifier keys.

Alt Add the alt key to the modifier keys.

Cmd Add the command key to the modifier keys. This is only supported on
macOS and AmigaOS.

Shift Add the shift key to the modifier keys.

If you specify more than one modifier key, you have to separate the individual keys by a
semicolon, e.g. "ctrl;shift".

When using modifier keys, the keyboard shortcut will only trigger if the modifier key(s)
and the main key are both down. This is useful for monitoring key combinations like
CTRL+V for pasting data, etc.

TYPE
String

APPLICABILITY
I

8.3 Acceleratoritem.Pressed

NAME
Acceleratoritem.Pressed – learn when the shortcut is pressed

FUNCTION
This attribute is triggered if the user presses the key(s) defined by this accelerator item.
RapaGUI automatically listens to this attribute so you do not need to explicitly request
a notification using the MOAI.Notify attribute.

TYPE
Boolean

APPLICABILITY
N

61

9 Application class

9.1 Overview

Application class is the master class that manages an application. Thus, there can be
only one instance of this class in every application. This instance is created by a call to
moai.CreateApp(). All windows that an application shows are children of the application
class. Thus, every GUI definition has to start with the application class.

9.2 Application.AboutMUI

NAME
Application.AboutMUI – show the MUI about window

SYNOPSIS
moai.DoMethod(id, "AboutMUI")

PLATFORMS
AmigaOS and compatibles only

FUNCTION
Show the MUI about window. The MUI styleguide says that all MUI applications should
include a menu item called "About MUI...".

INPUTS

id id of the application object

9.3 Application.AboutRapaGUI

NAME
Application.AboutRapaGUI – show the RapaGUI about window

SYNOPSIS
moai.DoMethod(id, "AboutRapaGUI")

FUNCTION
This method shows the RapaGUI about window. You should include a menu item called
"About RapaGUI..." in all your applications.

INPUTS

id id of the application object

9.4 Application.AddWindow

NAME
Application.AddWindow – add detached window object to application object

SYNOPSIS
moai.DoMethod(id, "AddWindow", window)

62 RapaGUI manual

FUNCTION
This method can be used to add a detached window object to the application object.
Once the window object has been attached to the application object, you can open the
window by setting its Window.Open attribute.

Detached window objects can be created either by calling the moai.CreateObject()

function or by explicitly detaching them from their parent by using the
Application.RemoveWindow method.

Please do note that you must not call Application.AddWindow for dialogs
created using moai.CreateDialog() since moai.CreateDialog() already calls
Application.AddWindow internally.

INPUTS

id id of the application object

window id of the window object to add

EXAMPLE
See Section 6.3 [moai.CreateObject], page 47.

9.5 Application.ContextMenu

NAME
Application.ContextMenu – set context menu for application (V2.0)

PLATFORMS
Windows, macOS, Linux

FUNCTION
If your application has installed an icon in the system tray by using Hollywood’s
SetTrayIcon() function, you can use this attribute to add a context menu to the
application’s tray icon. Just set this attribute to an identifier of a MOAI object derived
from Menu class and your application’s icon in the system tray will get a context menu.
Whenever the user presses the right mouse button on the icon in the system tray, the
context menu will be shown.

See Section 3.16 [Context menus], page 24, for an example.

TYPE
MOAI object

APPLICABILITY
I

9.6 Application.HelpFile

NAME
Application.HelpFile – set/get application help file (V2.0)

Chapter 9: Application class 63

FUNCTION
Set a help file for the application. On Windows this should point to a CHM file, on Amiga
to an AmigaGuide file and on all other platforms to a directory which contains all HTML
files belonging to the application’s manual (the main file must be called index.html, the
index file must be called findex.html) help file.

Once you have defined a help file, you can then use Application.ShowHelp and
Application.ShowHelpNode to open the help file.

This is currently unsupported on Android.

TYPE
String

APPLICABILITY
ISG

9.7 Application.Icon

NAME
Application.Icon – set application icon

PLATFORMS
AmigaOS and compatibles only

FUNCTION
This tag allows you to set the icon that will be shown on Workbench screen whenever
the application is iconified. You need to set this tag to the filename of an Amiga .info

icon file.

Normally, you should set the icons for your application using Hollywood’s @APPICON

preprocessor command. This tag is only here to support Amiga appicons on Workbench.

TYPE
String

APPLICABILITY
I

9.8 Application.OpenConfigWindow

NAME
Application.OpenConfigWindow – show MUI preferences window

SYNOPSIS
moai.DoMethod(id, "OpenConfigWindow")

PLATFORMS
AmigaOS and compatibles only

FUNCTION
Make MUI open the preferences window for the application. MUI supports individual
user interface settings for each application which is why every MUI application should
add a menu item like "Settings/MUI..." to allow the user to configure these settings.

64 RapaGUI manual

INPUTS

id id of the application object

9.9 Application.RemoveWindow

NAME
Application.RemoveWindow – detach window object from application object

SYNOPSIS
moai.DoMethod(id, "RemoveWindow", window)

FUNCTION
This method removes the specified window object from the application object and puts
the window object in detached state. Window objects in detached state can either be
reattached by running the Application.AddWindow method or can be freed by calling
moai.FreeObject().

Please do note that you must not call Application.RemoveWindow for di-
alogs freed using moai.FreeDialog() since moai.FreeDialog() already calls
Application.RemoveWindow internally.

INPUTS

id id of the application object

window id of the window object to remove

9.10 Application.Sleep

NAME
Application.Sleep – put application to sleep

FUNCTION
This attribute will put the application to sleep. All open windows will be disabled and
they won’t accept user input any more. This can be useful in case your application is
currently loading or saving files which makes it unable to handle user input.

TYPE
Boolean

APPLICABILITY
S

9.11 Application.ShowHelp

NAME
Application.ShowHelp – show application help file (V2.0)

SYNOPSIS
moai.DoMethod(id, "ShowHelp", what$)

Chapter 9: Application class 65

FUNCTION
If you have defined a help file for your application using the Application.HelpFile

attribute, you can use this method to show that help file. You have to pass the part
of the help file that should be shown in the what$ parameter. This can be one of the
following special values:

Contents Show the help file’s table of contents.

Index Show the help file’s index.

Search Show the help file’s search page. This is currently only supported on Win-
dows.

To show a specific node of the help file, use the Application.ShowHelpNode method
instead.

INPUTS

id id of the application object

what$ part of the help file to show (see above for possible values)

9.12 Application.ShowHelpNode

NAME
Application.ShowHelpNode – show certain node in help file (V2.0)

SYNOPSIS
moai.DoMethod(id, "ShowHelpNode", node$)

FUNCTION
If you have defined a help file for your application using the Application.HelpFile

attribute, you can use this method to show the node specified by node$ in that help file.

To show one of the standard parts of the help file instead of a specific node, use the
Application.ShowHelp method instead.

INPUTS

id id of the application object

node$ node to show

9.13 Application.UseIcons

NAME
Application.UseIcons – set default image type to icon (V2.0)

FUNCTION
This attribute can be used to globally change the default image type for attributes
such as Button.Icon or Toolbarbutton.Icon to icon instead of brush. Even though
the names of those attributes might suggest otherwise, they indeed expect a Hollywood
brush by default for historical reasons. Using Hollywood icons, however, is often more

66 RapaGUI manual

convenient because they offer greater flexibility, especially when it comes to high-DPI
support, which is why using Hollywood icons instead of brushes is often preferred by
GUI designers nowadays. See Section 3.12 [High-DPI support], page 20, for details.

Alternatively, you can also change the default image type from brush to icon on a per-
widget basis by using attributes such as Button.IconType or Toolbarbutton.IconType
but doing this globally using Application.UseIcons might be more convenient.

TYPE
Boolean

APPLICABILITY
I

9.14 Application.WindowMenu

NAME
Application.WindowMenu – set window menu title (V2.0)

PLATFORMS
macOS

FUNCTION
Set the title of macOS’ standard window menu to a custom one. This is useful when
localizing your applications.

TYPE
String

APPLICABILITY
I

67

10 Area class

10.1 Overview

Area class is the super class of every MOAI class that creates objects which have a visual
representation within a window. As such it allows you to manage several generic attributes
like object visibility (shown or hidden), state (enabled or disabled), tooltips, and context
menus. Children which are derived from Area class are usually called widgets (a portman-
teau of "window" and "gadget"). Area class can also provide you with information about
a widget’s position and size as well as other details belonging to its visual representation
within a window.

Note that objects deriving from Group class aren’t children of Area class since Group class
just creates groups of widgets but isn’t a widget itself, but just a layout tool.

10.2 Area.ContextMenu

NAME
Area.ContextMenu – set context menu for object

FUNCTION
Set this attribute to an identifier of a MOAI object derived from Menu class and the
respective object will get a context menu. Whenever the user presses the right mouse
button on the respective object, the context menu will be shown.

Also note that context menu events will then be delivered via the standard
Menuitem.Selected mechanism and not through a special context menu event handler.
Since you can use the same menu object on several widgets, you need a way to find out
the widget whose context menu triggered the event. To give you this information, the
event message will contain an additional item named Parent which contains the ID of
the context menu’s hosting widget. This allows you to re-use the same menu object as
a context menu for multiple parent widgets.

Starting with RapaGUI 2.0 you can also set up a notification on the attribute. In that
case, your event handler will be called immediately before RapaGUI shows the context
menu. You can then return either False for no context menu or use moai.Set() on
Area.ContextMenu to set the context menu that should be shown. This is very useful
for customizing the context menu depending on where the right mouse button has been
clicked. The position will be passed to your event handler. In case you are listening to
Area.ContextMenu, your event handler will also be passed some additional information
depending on the context menu’s parent widget. Here is an overview of those additional
message fields:

X X coordinate of mouse click.

Y Y coordinate of mouse click.

CursorPos

Cursor index at the position where the user clicked. This is only set for
widgets of type Texteditor class.

68 RapaGUI manual

Row Row at the position of the mouse click or -1 if there is no row at the click
position. This is only set for widgets of type Listview class.

Column Column at the position of the mouse click or -1 if there is no column at the
click position. This is only set for widgets of type Listview class.

Item Treeview item at the position of the mouse click or -1 if there is no item at
the click position. This is only set for widgets of type Treeview class.

AmigaOS users please note that MUI doesn’t allow context menu objects to be shared
across windows. You are not allowed to use the same menu object with widgets in
different windows. It’s okay to re-use a menu object for several widgets in the same
window but not for widgets in another window. All other platforms don’t have this
limitation, only AmigaOS is affected here.

To remove a context menu completely, pass the special string "(none)" to this attribute.

See Section 3.16 [Context menus], page 24, for an example.

TYPE
MOAI object

APPLICABILITY
ISGN

10.3 Area.Disabled

NAME
Area.Disabled – set/get disabled state

FUNCTION
Set this attribute to disable or enable a widget. Disabled widgets do not accept user
input any longer and are visually recognizable as disabled objects.

TYPE
Boolean

APPLICABILITY
ISG

10.4 Area.FixHeight

NAME
Area.FixHeight – fix height of object

FUNCTION
Set this to True to disable vertical resizing for this object.

TYPE
Boolean

APPLICABILITY
I

Chapter 10: Area class 69

10.5 Area.FixWidth

NAME
Area.FixWidth – fix width of object

FUNCTION
Set this to True to disable horizontal resizing for this object.

TYPE
Boolean

APPLICABILITY
I

10.6 Area.FontName

NAME
Area.FontName – set/get font for object (V2.0)

FUNCTION
Set or get the font for the object.

Note that on AmigaOS and compatibles this can only be set at initialization time.
You cannot change fonts for existing objects. Also, on AmigaOS you must also set
Area.FontSize if you set this attribute.

Also note that on AmigaOS Area.FontName can’t be used with widgets of type Label
class. Use Text class class.

TYPE
String

APPLICABILITY
ISG

10.7 Area.FontSize

NAME
Area.FontSize – set/get font size for object (V2.0)

FUNCTION
Set or get the font size for the object. The font size must be either a value in points
(non-Amiga) or in pixels (Amiga) or one of the following predefined font sizes:

Normal Normal font size.

Small Small font size.

Big Big font size.

Note that on AmigaOS and compatibles this can only be set at initialization time.
You cannot change fonts for existing objects. Also, on AmigaOS you must also set

70 RapaGUI manual

Area.FontName if you set this attribute to a numeric size. If you pass one of the prede-
fined font sizes (see above) on AmigaOS, you must not set Area.FontName, though.

Also note that on AmigaOS Area.FontSize can’t be used with widgets of type Label
class. Use Text class class.

TYPE
Number or string (see above for possible values)

APPLICABILITY
ISG

10.8 Area.FontStyle

NAME
Area.FontStyle – set/get font style for object (V2.0)

FUNCTION
Set or get the font style for the object. This can be a combination of the following
predefined styles:

Normal Normal font style. This cannot be combined with any other styles.

Bold Bold font style.

Italic Italic font style.

Underlined

Underlined font style.

Fixed Use a fixed width font.

Multiple styles can be combined by using a semicolon as a separator.

TYPE
String (see above for possible values)

APPLICABILITY
ISG

10.9 Area.Height

NAME
Area.Height – set/get height of object

FUNCTION
Set this attribute to the desired object height in device-independent pixels. This is
normally not necessary because RapaGUI automatically chooses an appropriate size for
its objects. However, in some cases it might be handy to have fine-tuned control over
object sizes.

When the parent window of the object is open, you can also read the object’s height
using attribute.

Chapter 10: Area class 71

TYPE
Number

APPLICABILITY
IG

10.10 Area.Hide

NAME
Area.Hide – show/hide object

FUNCTION
Set this attribute to show or hide an object.

TYPE
Boolean

APPLICABILITY
ISG

10.11 Area.Left

NAME
Area.Left – get left edge of object

FUNCTION
This attribute returns the x-position of an object within its parent window. This is only
valid if the object is currently visible.

TYPE
Number

APPLICABILITY
G

10.12 Area.NoAutoKey

NAME
Area.NoAutoKey – disable automatic shortcut generation

FUNCTION
Set this attribute to disable automatic shortcut generation. By default, the character
following an underscore character in a label or a menu entry will be treated as an ac-
celerator key that can be used to access the widget using the keyboard. If you set this
attribute, underscore characters will never be treated as shortcut markers and will be
shown normally in labels and menu entries.

See Section 3.13 [Keyboard shortcuts], page 21, for details.

72 RapaGUI manual

TYPE
Boolean

APPLICABILITY
I

10.13 Area.Redraw

NAME
Area.Redraw – force complete widget redraw

SYNOPSIS
moai.DoMethod(id, "Redraw")

FUNCTION
This method redraws the complete widget. Normally, this is not necessary since widgets
decide for themselves when they need to be redrawn. Still, it might be useful for testing
purposes or when using a widget derived from Scrollcanvas class.

INPUTS

id id of widget

10.14 Area.Tooltip

NAME
Area.Tooltip – set/get tooltip string

FUNCTION
Set a string that should be shown in a tooltip when the mouse hovers over the object.

TYPE
String

APPLICABILITY
ISG

10.15 Area.Top

NAME
Area.Top – get top edge of object

FUNCTION
This attribute returns the y-position of an object within its parent window. This is only
valid if the object is currently visible.

TYPE
Number

APPLICABILITY
G

Chapter 10: Area class 73

10.16 Area.Weight

NAME
Area.Weight – set object weight

FUNCTION
This attribute controls the weight of an object inside a group of objects. By default,
all objects in a group have a weight of 100. If you want to have an object that appears
twice as large, you have to give it a weight of 200. To make an object appear one and a
half times as large, just use 150 and so on.

Naturally, this attribute is only useful for objects which are resizable.

Note that when setting Area.Weight you normally shouldn’t set specific dimensions
via Area.Width and Area.Height. The width and height should be determined by the
Area.Weight setting instead.

TYPE
Number

APPLICABILITY
I

10.17 Area.Width

NAME
Area.Width – set/get width of object

FUNCTION
Set this attribute to the desired object width in device-independent pixels. This is
normally not necessary because RapaGUI automatically chooses an appropriate size for
its objects. However, in some cases it might be handy to have fine-tuned control over
object sizes.

When the parent window of the object is open, you can also read the object’s width
using attribute.

TYPE
Number

APPLICABILITY
IG

75

11 Busybar class

11.1 Overview

Busybar class derives from Area class and creates a widget which shows an animation
indicating that the application is currently in a busy state. This animation, however, just
shows activity but no progress. If you would like to visualize progress, use Progressbar class
instead. See Section 39.1 [Progressbar class], page 203, for details.

Once you’ve created an object of Busybar class, you have to call Busybar.Move repeatedly to
move the animation. This can be achieved by setting up an interval timer using Hollywood’s
SetInterval() function.

11.2 Busybar.Move

NAME
Busybar.Move – draw next animation frame

SYNOPSIS
moai.DoMethod(id, "Move")

FUNCTION
You have to call this method repeatedly in order to animate the widget. A good idea
is to install a Hollywood interval timer using SetInterval() and then call this method
from the timer about 10 times per second or so.

INPUTS

id id of the busybar object

11.3 Busybar.Reset

NAME
Busybar.Reset – stop animation

SYNOPSIS
moai.DoMethod(id, "Reset")

FUNCTION
This method resets the animation. Successive calls to Busybar.Move will start drawing
from the first frame again.

INPUTS

id id of the busybar object

77

12 Button class

12.1 Overview

Button class derives from Area class and allows you to create buttons very easily. The
XML tag’s content is used as the button label. If the button label contains an underscore,
RapaGUI will automatically set up the character following this underscore as a keyboard
shortcut. If you don’t want this behaviour, set Area.NoAutoKey to True. See Section 3.13
[Keyboard shortcuts], page 21, for details.

Example:

<button id="ok">OK</button>

12.2 Button.Hint

NAME
Button.Hint – set button hint (V2.0)

PLATFORMS
Android

FUNCTION
When using buttons in dialogs on Android, you can specify a hint value that tells Android
whether the button is the positive, negative, or neutral one. This hint value can be set
using this attribute. You can set it to the following values:

None No hint. This is the default setting.

Positive Button is the positive button in a dialog (e.g. "Yes").

Negative Button is the negative button in a dialog (e.g. "No").

Neutral Button is the neutral button in a dialog (e.g. "Cancel").

TYPE
String (see above for possible values)

APPLICABILITY
I

12.3 Button.Icon

NAME
Button.Icon – set button image

FUNCTION
Set this attribute to the identifier of a Hollywood brush or icon to add an image to
your button. Whether this attribute expects a Hollywood brush or icon, depends on
what you specify in the Button.IconType attribute. By default, Button.Icon expects
a Hollywood brush. You can control the position of the icon in relation to the button’s
label by setting the Button.IconPos attribute.

78 RapaGUI manual

Note that RapaGUI might scale the image to fit to the current monitor’s DPI setting.
Please read the chapter on high-DPI support for more information. See Section 3.12
[High-DPI support], page 20, for details.

Please also read about RapaGUI’s image cache to learn more about icon support in
RapaGUI. See Section 3.20 [Image cache], page 30, for details.

Note that on AmigaOS and compatibles icon support is only available with MUI 4.0 or
better.

TYPE
Number

APPLICABILITY
I

12.4 Button.IconPos

NAME
Button.IconPos – define button icon position

FUNCTION
Set the desired position of an icon specified using Button.Icon. This can be one of the
following values:

Left Show icon to the left of the label. This is the default.

Right Show icon to the right of the label.

Note that on AmigaOS and compatibles icon support is only available with MUI 4.0 or
better.

TYPE
String (see above for possible values)

APPLICABILITY
I

12.5 Button.IconScale

NAME
Button.IconScale – configure automatic image scaling (V2.0)

FUNCTION
If Button.Icon has been set to a raster brush and RapaGUI is running on a high-DPI
display, RapaGUI will automatically scale the brush’s raster graphics to fit to the current
monitor’s DPI setting. If you don’t want that, set this tag to False.

Alternatively, you can also globally disable automatic image scaling by setting the
ScaleGUI tag to False when calling @REQUIRE on RapaGUI. See Section 3.4 [Initial-
izing RapaGUI], page 11, for details.

Please also read the chapter about high-DPI support in RapaGUI to learn more about
supporting high-DPI displays. See Section 3.12 [High-DPI support], page 20, for details.

Chapter 12: Button class 79

TYPE
Boolean

APPLICABILITY
I

12.6 Button.IconType

NAME
Button.IconType – set icon type to use (V2.0)

FUNCTION
This attribute allows you to set the type of the Hollywood image object passed in the
Button.Icon attribute. By default, Button.Icon expects a Hollywood brush. By setting
Button.IconType, however, you can make it use a different Hollywood image type.

The following image types are currently available:

Brush Use a Hollywood brush. This is the default type. You can use either raster
or vector brushes. Vector brushes have the advantage that they can be
scaled to any resolution without losses in quality. This is very useful when
designing applications that should be compatible with high-DPI monitors.
See Section 3.12 [High-DPI support], page 20, for details.

Icon Use a Hollywood icon. This image type has the advantage that it can contain
several subimages of different sizes. This makes it possible to provide images
in different resolutions which can be very useful when designing applications
that should be compatible with high-DPI monitors. See Section 3.12 [High-
DPI support], page 20, for details.

Note that you can globally change the default of all IconType attributes to Holly-
wood icons by setting the Application.UseIcons tag. See Section 9.13 [Applica-
tion.UseIcons], page 65, for details.

TYPE
String (see above for possible values)

APPLICABILITY
I

12.7 Button.Pressed

NAME
Button.Pressed – learn if a button is pressed

FUNCTION
This attribute is triggered if the user presses the button. RapaGUI automatically listens
to this attribute for all buttons so you do not need to explicitly request a notification
using the MOAI.Notify attribute.

80 RapaGUI manual

TYPE
Boolean

APPLICABILITY
N

12.8 Button.Selected

NAME
Button.Selected – toggle selection state

FUNCTION
Use this to toggle the selection state of a toggle button or get notified of a user toggle
event. If you want to use this attribute, you have to set Button.Toggle to True first.

RapaGUI automatically listens to this attribute for all buttons so you do not need to
explicitly request a notification using the MOAI.Notify attribute.

TYPE
Boolean

APPLICABILITY
ISGN

12.9 Button.Text

NAME
Button.Text – set/get button label

FUNCTION
Set or get the button’s label using this attribute.

TYPE
String

APPLICABILITY
SG

12.10 Button.Toggle

NAME
Button.Toggle – create toggle button

FUNCTION
If you set this to True, a toggle button will be created. Toggle buttons have two states:
On and off. You can use the Button.Selected attribute to toggle states and get notified
about user toggle events.

By default, the button will be a normal button.

81

TYPE
Boolean

APPLICABILITY
I

83

13 Checkbox class

13.1 Overview

Checkbox class derives from Area class and allows you to create checkbox widgets. A
checkbox is a labelled box which by default is either on (checkmark is visible) or off (no
checkmark). It is most commonly used to allow the user to toggle options. The XML tag’s
content is used as the checkbox label.

Here is an example of how to create a checkbox in XML:

<checkbox>Yes, I’m over 18 years old</checkbox>

13.2 Checkbox.Right

NAME
Checkbox.Right – define position of checkbox label

FUNCTION
Set this to True to have the checkbox image appear to the right of the accompanying
label. By default, the checkbox image appears to the left of the label.

TYPE
Boolean

APPLICABILITY
I

13.3 Checkbox.Selected

NAME
Checkbox.Selected – set/get checkbox state

FUNCTION
Get and set the selected state of a checkbox object.

You can also set up a notification on this attribute to learn when the user toggles the
checkbox state.

TYPE
Boolean

APPLICABILITY
ISGN

85

14 Choice class

14.1 Overview

Choice class derives from Area class and creates widgets that allow the user to select an
entry from a predefined list of items. Only the selected item is visible until the user pulls
down the menu of choices.

When you declare a choice widget, you can use the <item> tag to fill the choice widget with
items. Here is an example XML excerpt for creating a choice widget with three entries:

<choice id="printer">

<item>HP Deskjet</item>

<item>NEC P6</item>

<item>Okimate 20</item>

</choice>

Alternatively, you can also create an empty choice widget and fill it with entries later by
using the Choice.Insert method. Here is how to create an empty choice widget:

<choice/>

14.2 Choice.Active

NAME
Choice.Active – set/get active choice item

FUNCTION
Set or get the active item in the choice widget ranging from index 0 for the first item to
number of entries - 1 for the last item.

You can also set up a notification on this attribute to learn when the user changes the
active choice item.

You can also pass the the special values Next or Prev to cycle through the choice widget’s
entries.

TYPE
Number or string (see above for possible values)

APPLICABILITY
ISGN

14.3 Choice.Clear

NAME
Choice.Clear – clear all entries (V1.1)

SYNOPSIS
moai.DoMethod(id, "Clear")

FUNCTION
Remove all entries from choice widget.

86 RapaGUI manual

Note that on AmigaOS and compatibles this feature is only available on MUI 4.0 or
higher.

INPUTS

id id of the choice object

14.4 Choice.Count

NAME
Choice.Count – get number of entries in choice widget (V1.1)

FUNCTION
Returns the current number of entries in the choice widget.

TYPE
Number

APPLICABILITY
G

14.5 Choice.GetEntry

NAME
Choice.GetEntry – get choice entry (V1.1)

SYNOPSIS
e$ = moai.DoMethod(id, "GetEntry", pos)

FUNCTION
Get an entry from a choice widget. You can pass either an absolute index in pos or
the special value Active to get the active entry. Choice.GetEntry will then return the
entry as a string.

INPUTS

id id of the choice object

pos entry index or "Active"

RESULTS

e$ choice entry at specified index

14.6 Choice.Insert

NAME
Choice.Insert – insert new entry (V1.1)

SYNOPSIS
moai.DoMethod(id, "Insert", pos, e$)

Chapter 14: Choice class 87

FUNCTION
Insert the entry specified in e$ into the choice widget. The insert position is specified
in the pos argument. The new entry will be added in front of the entry specified by
pos. This can be an absolute index position starting at 0 for the first entry or one of the
following special values:

Top Insert as first entry.

Active Insert before the active entry. If there is no active entry, the entry will be
inserted at the very top of the entry list.

Bottom Insert as last entry.

If pos is bigger or equal to the number of entries in the choice widget, the entry will be
inserted as the last entry.

Note that on AmigaOS and compatibles this feature is only available on MUI 4.0 or
higher.

INPUTS

id id of the choice object

pos insert position as absolute number or special value (see above)

e$ entry to insert

14.7 Choice.Remove

NAME
Choice.Remove – remove entry from choice widget (V1.1)

SYNOPSIS
moai.DoMethod(id, "Remove", pos)

FUNCTION
Remove an entry from a choice widget. The position can be specified as an absolute
index value or as one of the following special values:

First Remove first entry.

Active Remove active entry.

Last Remove last entry.

When the active entry is removed, the following entry will become active.

Note that on AmigaOS and compatibles this feature is only available on MUI 4.0 or
higher.

INPUTS

id id of the choice object

pos index of entry to remove or one of the special values (see above)

88 RapaGUI manual

14.8 Choice.Rename

NAME
Choice.Rename – rename an entry (V1.1)

SYNOPSIS
moai.DoMethod(id, "Rename", pos, newname$)

FUNCTION
Rename the choice entry at the specified position to the name specified in newname$. The
entry position is specified in the pos argument. This can be an absolute index position
starting at 0 for the first entry or one of the following special values:

Active Rename the active entry.

Note that on AmigaOS and compatibles this feature is only available on MUI 4.0 or
higher.

INPUTS

id id of the choice object

pos entry position as absolute number or special value (see above)

newname$ new name for choice entry

89

15 Combobox class

15.1 Overview

Combobox class derives from Area class and creates a widget which is a combination of a
list and a text widget. The user may either choose an entry from a predefined list of entries
or he may enter individual data into the text widget.

When creating a combobox object, you can use the <item> tag to fill it with entries. Here
is an example:

<combobox>

<item>The</item>

<item>quick</item>

<item>brown</item>

<item>fox</item>

<item>jumps</item>

<item>over</item>

<item>the</item>

<item>lazy</item>

<item>dog</item>

</combobox>

You can also create an empty combobox and fill it with entries later by using the
Combobox.Insert method. Here is how to create an empty combobox:

<combobox/>

15.2 Combobox.Acknowledge

NAME
Combobox.Acknowledge – learn when the user presses RETURN (V2.0)

FUNCTION
Whenever the user hits return this attribute will be set to True. You can listen to this
notification and take the appropriate action.

TYPE
Boolean

APPLICABILITY
N

15.3 Combobox.Clear

NAME
Combobox.Clear – clear all entries (V1.1)

SYNOPSIS
moai.DoMethod(id, "Clear")

90 RapaGUI manual

FUNCTION
Remove all entries from combobox.

INPUTS

id id of the combobox object

15.4 Combobox.Close

NAME
Combobox.Close – close the combobox’s list (V2.0)

SYNOPSIS
moai.DoMethod(id, "Close")

FUNCTION
Close the combobox’s associated list of predefined values.

INPUTS

id id of the combobox object

15.5 Combobox.Count

NAME
Combobox.Count – get number of entries in combobox (V1.1)

FUNCTION
Returns the current number of entries in the combobox.

TYPE
Number

APPLICABILITY
G

15.6 Combobox.GetEntry

NAME
Combobox.GetEntry – get combobox entry (V1.1)

SYNOPSIS
e$ = moai.DoMethod(id, "GetEntry", pos)

FUNCTION
Get entry at position pos from combobox widget.

INPUTS

id id of the combobox object

pos entry index

Chapter 15: Combobox class 91

RESULTS

e$ entry at specified index

15.7 Combobox.Insert

NAME
Combobox.Insert – insert new entry (V1.1)

SYNOPSIS
moai.DoMethod(id, "Insert", pos, e$)

FUNCTION
Insert the entry specified in e$ into the combobox. The insert position is specified in the
pos argument. The new entry will be added in front of the entry specified by pos. This
can be an absolute index position starting at 0 for the first entry or one of the following
special values:

Top Insert as first entry.

Bottom Insert as last entry.

If pos is bigger or equal to the number of entries in the combobox, the entry will be
inserted as the last entry.

INPUTS

id id of the combobox object

pos insert position as absolute number or special value (see above)

e$ entry to insert

15.8 Combobox.Open

NAME
Combobox.Open – open the combobox’s list (V2.0)

SYNOPSIS
moai.DoMethod(id, "Open")

FUNCTION
Pop up the combobox’s associated list of predefined values.

INPUTS

id id of the combobox object

92 RapaGUI manual

15.9 Combobox.Popup

NAME
Combobox.Popup – learn about open and close events (V2.0)

FUNCTION
Whenever the user opens or closes the combobox’s list, this attribute will trigger a
notification. The TriggerValue will contain the current state of the popup list, i.e.
True for open and False for closed.

TYPE
Boolean

APPLICABILITY
N

15.10 Combobox.Remove

NAME
Combobox.Remove – remove entry from combobox (V1.1)

SYNOPSIS
moai.DoMethod(id, "Remove", pos)

FUNCTION
Remove entry at the position specified by pos from combobox.

INPUTS

id id of the combobox object

pos index of entry to remove

15.11 Combobox.Rename

NAME
Combobox.Rename – rename an entry (V1.1)

SYNOPSIS
moai.DoMethod(id, "Rename", pos, newname$)

FUNCTION
Rename the combobox entry at the specified position to the name specified in newname$.
The entry position is specified in the pos argument. This must be an absolute index
position starting at 0 for the first entry.

INPUTS

id id of the combobox object

pos entry position as absolute number

newname$ new name for combobox entry

Chapter 15: Combobox class 93

15.12 Combobox.Selected

NAME
Combobox.Selected – learn about selection changes (V2.0)

FUNCTION
Whenever the user selects an item from the combobox’s list, this attribute will trigger.

TYPE
Boolean

APPLICABILITY
N

15.13 Combobox.Value

NAME
Combobox.Value – set/get current combobox contents

FUNCTION
Get and set the current combobox contents.

You can also set up a notification on this attribute to be notified whenever the contents
of the combobox object change.

TYPE
String

APPLICABILITY
ISGN

95

16 Dialog class

16.1 Overview

Dialog class derives from Window class and creates modal (or modeless) dialogs. Modal
dialogs are special top-level windows which block the rest of the application until they are
closed. Modal dialogs are typically used when user action is required to continue with the
program or to indicate that the application is currently busy. A dialog could show a progress
bar then, for example.

As with windows, the root element of a dialog always needs to be a single group object,
i.e. an instance of Group class. See Section 18.1 [Group class], page 105, for details.
Additionally, it is not allowed to have multiple elements at the dialog’s root level. You
must only use a single group object as the root element. Here’s an example of a simple
progress dialog in XML:

<dialog id="mydlg" title="Working...">

<vgroup>

<progressbar id="prg"/>

<button id="cancel">Cancel</button>

</vgroup>

</dialog>

You should create dialogs only when you need them and destroy them as soon as you
are finished with them. It is not advised to create all your dialogs on startup using
moai.CreateApp() and keep them in memory all the time. Instead, you should use
moai.CreateDialog() to create a dialog when you need it and then have it destroyed as
soon as you are finished with it. The reason for this is that windows are quite a finite
resource on some operating systems supported by RapaGUI. For example, on Windows
there is a limit of about 10,000 windows per process. That might sound like sufficiently
enough but keep in mind that on Windows every widget is a "window" for the operating
system, e.g. every label, button, frame, checkbox, group, etc. in your application is
a window so you should take care that you create your dialogs only as needed using
moai.CreateDialog() and destroy them right afterwards.

In practice, it is advised to create a separate XML file for each of your dialogs and then
use moai.CreateDialog() to convert the XML file into a dialog at runtime and have the
dialog destroyed automatically by RapaGUI as soon as the user closes it.

As a subclass of Window class most Window class attributes and methods can be used
with Dialog class as well. See Section 62.1 [Window class], page 301, for details. But
note that modal dialogs mustn’t be opened by setting Window.Open but by running the
Dialog.ShowModal method. To close a modal dialog, simply call the Dialog.EndModal

method. This will also automatically destroy the dialog, i.e. it will implicitly call
moai.FreeDialog() on the dialog unless you explicitly request that the dialog should not
be destroyed by setting an optional argument to True.

Similarly, the dialog will also be automatically destroyed when the user clicks the close
box of a dialog. If you don’t want this or if you need to customize the application’s
behaviour when clicking the close box of a dialog, you have to install a listener on the

96 RapaGUI manual

Window.CloseRequest attribute. If there is no listener on this attribute, RapaGUI will
simply call Dialog.EndModal with 0 as the parameter when the dialog’s close box is clicked.

If you want to open a modeless dialog, i.e. a dialog that doesn’t block your script while it
is open, you must not use Dialog.ShowModal but set Window.Open to True for the dialog
instead (and possibly set Application.Sleep to True too, if you wish to put the application
in some sort of sleep state while the dialog is open). You can then implement the dialog’s
actual behaviour (e.g. a progress bar that is constantly being updated) by repeatedly calling
a management function either using SetTimeout() or Hollywood 9.0’s new RunCallback()

function. When you’re finished with a modeless dialog, just set Window.Open to False on it.
Do not use Dialog.EndModal with modeless dialogs! See the "Dialogs" example that comes
with RapaGUI for an example of a modeless dialog (choose "Test progress bar dialog" in
the menu).

16.2 Dialog.EndModal

NAME
Dialog.EndModal – close dialog and end modal loop

SYNOPSIS
moai.DoMethod(id, "EndModal", retval[, nodestroy])

FUNCTION
This method will close the specified dialog that has been opened using
Dialog.ShowModal and it will break its modal loop. The value you pass in retval will
be the return value of the call to this dialog’s Dialog.ShowModal method then. This
value is often used to indicate success or failure, i.e. you could return True in case the
user pressed the "OK" button, and False otherwise.

Additionally, this method will automatically destroy the dialog, i.e. it will implicitly
call moai.FreeDialog() on the dialog object. If you don’t want this, you have to set
the optional argument nodestroy to True. However, it is recommended and it is good
programming practice to destroy every dialog as soon as you are finished with it. See
Section 16.1 [Dialog class], page 95, for details.

INPUTS

id id of the dialog object

retval desired return value for Dialog.ShowModal

nodestroy

optional: True if this method shouldn’t automatically destroy the dialog
(defaults to False which means destroy the dialog after closing it)

16.3 Dialog.ShowModal

NAME
Dialog.ShowModal – open dialog and begin modal loop

SYNOPSIS
retval = moai.DoMethod(id, "ShowModal")

Chapter 16: Dialog class 97

FUNCTION
This method opens the dialog window and begins a modal loop that blocks the rest
of the application and waits for the dialog to be closed before returning control to the
script. In other words, Dialog.ShowModal will not return before the user either closes
the dialog or the script calls Dialog.EndModal on the dialog, whatever happens first.

If you want to open a modeless dialog, i.e. a dialog that doesn’t block your script while
it is open, you must not use Dialog.ShowModal but set Window.Open to True for the
dialog instead (and possibly set Application.Sleep to True too, if you wish to put
the application in some sort of sleep state while the dialog is open). You can then
implement the dialog’s actual behaviour (e.g. a progress bar that is constantly being
updated) by repeatedly calling a management function either using SetTimeout() or
Hollywood 9.0’s new RunCallback() function. When you’re finished with a modeless
dialog, just set Window.Open to False on it. Do not use Dialog.EndModal with modeless
dialogs!

Note that it is good programming practice to create and destroy dialogs as needed. You
should not keep them in memory for the complete lifetime of your application but only
create them when necessary and destroy them as soon as you are finished with them.
See Section 16.1 [Dialog class], page 95, for details.

If you want to be notified when the user clicks the close box of a dialog, you have to
install a listener on the Window.CloseRequest attribute. If there is no listener on this
attribute, RapaGUI will simply call Dialog.EndModal with 0 as the parameter when the
dialog’s close box is clicked.

INPUTS

id id of the dialog object

RESULTS

retval dialog return value

EXAMPLE
See Section 6.3 [moai.CreateObject], page 47.

99

17 Finddialog class

17.1 Overview

Finddialog class derives from Dialog class and creates a standard system find dialog. Find
dialogs are typically used in connection with Texteditor class to allow the user to search
through the entire contents of a texteditor widget.

Even though Finddialog class is a subclass of Dialog class, the dialogs it creates must always
be modeless. Thus, it is neither allowed to show them using Dialog.ShowModal nor is it
allowed to close them using Dialog.EndModal. Instead, dialogs created by Finddialog class
must always be shown and hidden by setting the Window.Open attribute.

Finddialog class is available since RapaGUI 2.0.

Note that this class is currently unsupported on AmigaOS (and compatibles) and Android.

17.2 Finddialog.Down

NAME
Finddialog.Down – set/get search direction (V2.0)

FUNCTION
Set/get the search direction (True for searching downwards, False for searching up-
wards).

TYPE
Boolean

APPLICABILITY
ISG

17.3 Finddialog.Find

NAME
Finddialog.Find – learn when the find button is pressed (V2.0)

FUNCTION
Set up a notification on this attribute to learn when the dialog’s find button is pressed.

TYPE
Boolean

APPLICABILITY
N

100 RapaGUI manual

17.4 Finddialog.FindNext

NAME
Finddialog.FindNext – learn when the find next button is pressed (V2.0)

FUNCTION
Set up a notification on this attribute to learn when the dialog’s find next button is
pressed.

TYPE
Boolean

APPLICABILITY
N

17.5 Finddialog.FindString

NAME
Finddialog.FindString – set/get current find string (V2.0)

FUNCTION
Set/get the current find string.

TYPE
String

APPLICABILITY
ISG

17.6 Finddialog.MatchCase

NAME
Finddialog.MatchCase – set/get case sensitivity setting (V2.0)

FUNCTION
Set/get the case sensitivity setting in dialog.

TYPE
Boolean

APPLICABILITY
ISG

17.7 Finddialog.NoMatchCase

NAME
Finddialog.NoMatchCase – use case-insensitive search (V2.0)

FUNCTION
If you set this attribute to True, the dialog won’t allow toggling case sensitive searching.

Chapter 17: Finddialog class 101

TYPE
Boolean

APPLICABILITY
I

17.8 Finddialog.NoUpDown

NAME
Finddialog.NoUpDown – forbid changing the search direction (V2.0)

FUNCTION
If you set this attribute to True, the dialog won’t allow changing the search direction.

TYPE
Boolean

APPLICABILITY
I

17.9 Finddialog.NoWholeWord

NAME
Finddialog.NoWholeWord – forbid searching for whole words (V2.0)

FUNCTION
If you set this attribute to True, the dialog won’t allow searching for whole words.

TYPE
Boolean

APPLICABILITY
I

17.10 Finddialog.Replace

NAME
Finddialog.Replace – learn when the replace button is pressed (V2.0)

FUNCTION
Set up a notification on this attribute to learn when the dialog’s replace button is pressed.

TYPE
Boolean

APPLICABILITY
N

102 RapaGUI manual

17.11 Finddialog.ReplaceAll

NAME
Finddialog.ReplaceAll – learn when the replace all button is pressed (V2.0)

FUNCTION
Set up a notification on this attribute to learn when the dialog’s replace all button is
pressed.

TYPE
Boolean

APPLICABILITY
N

17.12 Finddialog.ReplaceMode

NAME
Finddialog.ReplaceMode – put finddialog into replace mode (V2.0)

FUNCTION
Create a replace dialog instead of a search dialog.

TYPE
Boolean

APPLICABILITY
I

17.13 Finddialog.ReplaceString

NAME
Finddialog.ReplaceString – set/get current replace string (V2.0)

FUNCTION
Set/get the current replace string.

TYPE
String

APPLICABILITY
ISG

17.14 Finddialog.WholeWord

NAME
Finddialog.WholeWord – set/get whole word searching (V2.0)

FUNCTION
Set/get the whole word searching flag in the find dialog.

103

TYPE
Boolean

APPLICABILITY
ISG

105

18 Group class

18.1 Overview

Group class can be used to lay out a number of children in various ways. When the parent’s
size changes, groups relayout their children which can be very useful to create windows that
are freely resizable in all directions.

The following different group types are supported by RapaGUI:

<hgroup> Group children will be laid out in a row (vertical).

<vgroup> Group children will be laid out in a column (horizontal).

<colgroup>

Group children will be laid out in columns.

<scrollgroup>

A group with scrollbars. This is a special group which shows an embedded group
with scrollbars. See Section 44.1 [Scrollgroup class], page 221, for details.

Column groups are useful if you need to have identical widget sizes for all your children in
a group for a more pleasant visual appearance. For example, imagine a form made up of
text entry widgets and text objects. It is recommended to use a <colgroup> here because
it leads to a clear and ordered visual appearance. Here’s an example:

<colgroup columns="2">

<label>Name</label>

<textentry/>

<label>Street</label>

<textentry/>

<label>City</label>

<textentry/>

<label>Zip code</label>

<textentry/>

<label>Country</label>

<textentry/>

<label>Telephone</label>

<textentry/>

<label>Email</label>

<textentry/>

</colgroup>

If we used a <vgroup> with one <hgroup> per row the appearance would be pretty bad
because the text entry widget’s width would be different for each line which looks pretty
ugly.

Note that Group class doesn’t derive from Area class because groups do not exist as physical
widgets but they are just layout tools for their child widgets or groups. This is why you
cannot use attributes and methods from Area class on group objects.

106 RapaGUI manual

18.2 Group.Append

NAME
Group.Append – add detached object as last group child

SYNOPSIS
moai.DoMethod(id, "Append", obj)

FUNCTION
This method can be used to add the detached object specified by obj to the group object
specified by id. The detached object will be added as the group’s last child. After this
method returns the specified object will change its state from detached to attached. That
is why you must no longer use functions that expect a detached object with this object
now.

Before you can call this method, you have to put the group into a special state
that allows the addition and removal of children. This can be done by running the
Group.InitChange and Group.ExitChange methods on the respective group object.

Detached MOAI objects can be created either by calling the moai.CreateObject()

function or by explicitly detaching them from their parent by using the Group.Remove

method.

INPUTS

id id of the group object

obj id of the object to attach

EXAMPLE
See Section 6.3 [moai.CreateObject], page 47.

18.3 Group.Color

NAME
Group.Color – set group background color

FUNCTION
Set the background color for the group. This must only be used with <hgroup> or
<vgroup> objects. It isn’t supported for <colgroup> objects. Also, you must not set
Group.Frame to True when using this attribute. If you want to set the background color
of a framed group, you have to create a helper group around the group whose background
color you want to set, e.g.

<vgroup frame="true" padding="0">

<vgroup color="#ffffff">

...

</vgroup>

</vgroup>

If you want to set the background color for a <colgroup>, you can also just create a
helper group around the column group (see above).

TYPE
Number

Chapter 18: Group class 107

APPLICABILITY
I

18.4 Group.Columns

NAME
Group.Columns – define group columns

FUNCTION
Set the number of columns for a two dimensional grid group. If you specify this tag,
make sure that the grid is balanced, i.e. there is no remainder when dividing the total
number of children by the number of columns.

This attribute must only be used with the <colgroup> tag.

TYPE
Number

APPLICABILITY
I

18.5 Group.ExitChange

NAME
Group.ExitChange – terminate group exchange state

SYNOPSIS
moai.DoMethod(id, "ExitChange"[, force])

FUNCTION
This method terminates the state established by Group.InitChange. If children have
been added or removed, RapaGUI will refresh the group making the changes visible to
the user. You can force RapaGUI to do this refresh by setting the "force" argument to
True. In that case RapaGUI will always refresh the whole group no matter if objects
have been added or removed. Forcing a refresh is useful if there’s an object inside your
group that you want to force a refresh on.

INPUTS

id id of the group object

force optional: specify True here to force a complete refresh; otherwise RapaGUI
will only refresh the group if objects have been added or removed

EXAMPLE
See Section 6.3 [moai.CreateObject], page 47.

108 RapaGUI manual

18.6 Group.Frame

NAME
Group.Frame – create framed group

FUNCTION
Set this attribute to True to add a frame around this group. You can also add a title
for the frame by setting the Group.FrameTitle attribute.

TYPE
Boolean

APPLICABILITY
I

18.7 Group.FrameTitle

NAME
Group.FrameTitle – set title for framed group

FUNCTION
If you are creating a framed group by setting Group.Frame to True, you can use this at-
tribute to add a title text for the frame. This attribute must only be used if Group.Frame
has been set to True.

Note that changing a frame’s title requires MUI 4.0 or better on AmigaOS and compat-
ibles.

TYPE
String

APPLICABILITY
ISG

18.8 Group.HAlign

NAME
Group.HAlign – set default horizontal alignment

FUNCTION
Set this attribute to define how non-resizable children should be aligned in case they are
smaller than the size allocated for them. The following options are available:

Left Left alignment.

Right Right alignment.

Center Centered alignment. This is the default.

TYPE
String (see above for possible values)

Chapter 18: Group class 109

APPLICABILITY
I

18.9 Group.Hide

NAME
Group.Hide – show/hide group

FUNCTION
Set this attribute to show or hide a group. Note that groups maintain their private
visibility state, so setting this flag doesn’t mean that the group simply sets Area.Hide
on all its children. Both, widgets and groups, maintain their own visibility state.

TYPE
Boolean

APPLICABILITY
ISG

18.10 Group.HorizSpacing

NAME
Group.HorizSpacing – set horizontal spacing

FUNCTION
Set the number of device-independent pixels to use as horizontal spacing between the
group’s children.

TYPE
Number

APPLICABILITY
I

18.11 Group.Icon

NAME
Group.Icon – set group icon

FUNCTION
If you define groups for a pageview, you can use this attribute to specify an image for this
group that shall be displayed in the widget that is used to browse through the individual
pages. See Section 34.1 [Pageview class], page 189, for details. Whether this attribute
expects a Hollywood brush or icon, depends on what you specify in the Group.IconType
attribute. By default, Group.Icon expects a Hollywood brush. To remove the image
from a group page, set this attribute to -1.

110 RapaGUI manual

Note that RapaGUI might scale the image to fit to the current monitor’s DPI setting.
Please read the chapter on high-DPI support for more information. See Section 3.12
[High-DPI support], page 20, for details.

Please also read about RapaGUI’s image cache to learn more about icon support in
RapaGUI. See Section 3.20 [Image cache], page 30, for details.

Starting with RapaGUI 1.1 this attribute has an applicability of ISG. Before that, its
applicability was just I. Note that on AmigaOS and compatibles changing the group
icon at runtime for all pageview modes except list mode is only available on MUI 4.0 or
higher.

TYPE
Number

APPLICABILITY
ISG

18.12 Group.IconScale

NAME
Group.IconScale – configure automatic image scaling (V2.0)

FUNCTION
If Group.Icon has been set to a raster brush and RapaGUI is running on a high-DPI
display, RapaGUI will automatically scale the brush’s raster graphics to fit to the current
monitor’s DPI setting. If you don’t want that, set this tag to False.

Alternatively, you can also globally disable automatic image scaling by setting the
ScaleGUI tag to False when calling @REQUIRE on RapaGUI. See Section 3.4 [Initial-
izing RapaGUI], page 11, for details.

Please also read the chapter about high-DPI support in RapaGUI to learn more about
supporting high-DPI displays. See Section 3.12 [High-DPI support], page 20, for details.

TYPE
Boolean

APPLICABILITY
I

18.13 Group.IconType

NAME
Group.IconType – set icon type to use (V2.0)

FUNCTION
This attribute allows you to set the type of the Hollywood image object passed in the
Group.Icon attribute. By default, Group.Icon expects a Hollywood brush. By setting
Group.IconType, however, you can make it use a different Hollywood image type.

Chapter 18: Group class 111

The following image types are currently available:

Brush Use a Hollywood brush. This is the default type. You can use either raster
or vector brushes. Vector brushes have the advantage that they can be
scaled to any resolution without losses in quality. This is very useful when
designing applications that should be compatible with high-DPI monitors.
See Section 3.12 [High-DPI support], page 20, for details.

Icon Use a Hollywood icon. This image type has the advantage that it can contain
several subimages of different sizes. This makes it possible to provide images
in different resolutions which can be very useful when designing applications
that should be compatible with high-DPI monitors. See Section 3.12 [High-
DPI support], page 20, for details.

Note that you can globally change the default of all IconType attributes to Holly-
wood icons by setting the Application.UseIcons tag. See Section 9.13 [Applica-
tion.UseIcons], page 65, for details.

TYPE
String (see above for possible values)

APPLICABILITY
I

18.14 Group.InitChange

NAME
Group.InitChange – prepare group for addition or removal of children

SYNOPSIS
moai.DoMethod(id, "InitChange")

FUNCTION
Prepare a group for addition or removal of children. Whenever you call methods like
Group.Append, Group.Prepend, Group.Insert or Group.Remove you first have to call
this method to put the group into a special exchange state which allows the addition
and removal of children. When you’re finished, use Group.ExitChange to relayout the
group.

INPUTS

id id of the group object

EXAMPLE
See Section 6.3 [moai.CreateObject], page 47.

18.15 Group.Insert

NAME
Group.Insert – insert detached object after specified child

112 RapaGUI manual

SYNOPSIS
moai.DoMethod(id, "Insert", obj, pred)

FUNCTION
This method can be used to insert the detached object specified by obj to the group
object specified by id. The detached object will be added after the child specified by
pred. After this method returns the specified object will change its state from detached
to attached. That is why you must no longer use functions that expect a detached object
with this object now.

Before you can call this method, you have to put the group into a special state
that allows the addition and removal of children. This can be done by running the
Group.InitChange and Group.ExitChange methods on the respective group object.

Detached MOAI objects can be created either by calling the moai.CreateObject()

function or by explicitly detaching them from their parent by using the Group.Remove

method.

INPUTS

id id of the group object

obj id of the object to insert

pred the object will be inserted after this object

EXAMPLE
See Section 6.3 [moai.CreateObject], page 47.

18.16 Group.Padding

NAME
Group.Padding – set padding space between frame and group

FUNCTION
When creating a framed group, you can use this attribute to define the number of padding
device-independent pixels between the frame and the group’s children.

Additionally, on Windows, Linux, and macOS this attribute also defines the number
of padding pixels around the group when the group is part of a pageview object. See
Section 34.1 [Pageview class], page 189, for details.

TYPE
Number

APPLICABILITY
I

18.17 Group.Paint

NAME
Group.Paint – request paint notification

Chapter 18: Group class 113

FUNCTION
Set up a listener on this attribute to have your event handler called whenever the group
background needs to be drawn. Your event handler can then draw custom graphics to
the group background.

RapaGUI will pass the identifier of a Hollywood brush whose size is exactly as big as
the group background. You then have to draw the desired background graphics to this
brush. Precisely, you just have to draw to the rectangle defined by the four coordinates X,
Y, Width, and Height which are passed to your callback as well. These four coordinates
describe a rectangular area within the dimensions of the brush that is passed to your
callback. When a full redraw is needed, X and Y will be 0 and Width and Height will
match the dimensions of the brush. Most oftenly, however, only a partial redraw is needed
and then you must only draw to the portion of the brush defined by those coordinates.

The following extra arguments will be passed to your event handler:

Brush: Contains the identifier of a brush you have to draw to. Use Hollywood’s
SelectBrush() command to select this brush as the output device in your
callback. Don’t forget to call EndSelect() when you are done!

ViewWidth:

Contains the total group width. This is also identical to the width of the
brush that is passed to your callback.

ViewHeight:

Contains the total group height. This is also identical to the height of the
brush that is passed to your callback.

X: Contains the x-position inside the brush at which you should start drawing.
See above for details.

Y: Contains the y-position inside the brush at which you should start drawing.
See above for details.

Width: Contains the number of columns you should paint to the brush (starting
from X). See above for details.

Height: Contains the number of rows you should paint to the brush (starting from
Y). See above for details.

Note that Group.Paint must only be used with <hgroup> or <vgroup> objects. It isn’t
supported for <colgroup> objects. Also, you must not set Group.Frame to True when
using this attribute. If you want to draw the background of a framed group, you have
to create a helper group around the group whose background you want to draw, e.g.

<vgroup frame="true" padding="0">

<vgroup notify="paint">

...

</vgroup>

</vgroup>

If you want to draw the background of a <colgroup>, you can also just create a helper
group around the column group (see above).

Note that on AmigaOS and compatibles this feature is only available on MUI 4.0 or
higher.

114 RapaGUI manual

TYPE
Boolean

APPLICABILITY
N

18.18 Group.Prepend

NAME
Group.Prepend – add detached object as first group child

SYNOPSIS
moai.DoMethod(id, "Prepend", obj)

FUNCTION
This method can be used to add the detached object specified by obj to the group object
specified by id. The detached object will be added as the group’s first child. After this
method returns the specified object will change its state from detached to attached. That
is why you must no longer use functions that expect a detached object with this object
now.

Before you can call this method, you have to put the group into a special state
that allows the addition and removal of children. This can be done by running the
Group.InitChange and Group.ExitChange methods on the respective group object.

Detached MOAI objects can be created either by calling the moai.CreateObject()

function or by explicitly detaching them from their parent by using the Group.Remove

method.

INPUTS

id id of the group object

obj id of the object to attach

EXAMPLE
See Section 6.3 [moai.CreateObject], page 47.

18.19 Group.Remove

NAME
Group.Remove – detach object from group

SYNOPSIS
moai.DoMethod(id, "Remove", obj)

FUNCTION
This method can be used to detach the specified object from the specified group. Af-
ter this method returns the specified object will change its state from attached to de-
tached. This means that you could now attach it to another group using a function like
Group.Insert or you could free it using moai.FreeObject().

Chapter 18: Group class 115

Before you can call this method, you have to put the group into a special state
that allows the addition and removal of children. This can be done by running the
Group.InitChange and Group.ExitChange methods on the respective group object.

INPUTS

id id of the group object

obj id of the object to remove

EXAMPLE
moai.DoMethod("mygroup", "initchange")

moai.DoMethod("mygroup", "remove", "mychild")

moai.DoMethod("mygroup", "exitchange", false)

The code above removes the child "mychild" from the group "mygroup". You could then
attach "mychild" to another group or free it.

18.20 Group.SameSize

NAME
Group.SameSize – set same size for all children

FUNCTION
Set this attribute to True to force the group to use the same size for all children. This of-
ten creates a more consistent and better look. RapaGUI automatically sets this attribute
for horizontal groups which contain a row of buttons.

TYPE
Boolean

APPLICABILITY
I

18.21 Group.Spacing

NAME
Group.Spacing – set spacing

FUNCTION
Set the number of device-independent pixels to use as horizontal and vertical spacing
between the group’s children. Setting this attribute has the same effect as setting both
Group.HorizSpacing and Group.VertSpacing.

TYPE
Number

APPLICABILITY
I

116 RapaGUI manual

18.22 Group.Title

NAME
Group.Title – set group title

FUNCTION
If you define groups for a pageview, you can use this attribute to specify a title for this
group that shall be displayed in the widget that is used to browse through the individual
pages. See Section 34.1 [Pageview class], page 189, for details.

Starting with RapaGUI 1.1 this attribute has an applicability of ISG. Before that, its
applicability was just I. Note that on AmigaOS and compatibles changing the group
title at runtime for all pageview modes except list mode is only available on MUI 4.0 or
higher.

TYPE
String

APPLICABILITY
ISG

18.23 Group.VAlign

NAME
Group.VAlign – set default vertical alignment

FUNCTION
Set this attribute to define how non-resizable children should be aligned in case they are
smaller than the size allocated for them. The following options are available:

Top Top alignment.

Bottom Bottom alignment.

Center Centered alignment. This is the default.

TYPE
String (see above for possible values)

APPLICABILITY
I

18.24 Group.VertSpacing

NAME
Group.VertSpacing – set vertical spacing

FUNCTION
Set the number of device-indepdent pixels to use as vertical spacing between the group’s
children.

TYPE
Number

Chapter 18: Group class 117

APPLICABILITY
I

18.25 Group.Weight

NAME
Group.Weight – set group weight

FUNCTION
This attribute controls the weight of a group object inside another group of objects. By
default, all objects in a group have a weight of 100. If you want to have an object that
appears twice as large, you have to give it a weight of 200. To make a group appear one
and a half times as large, just use 150 and so on.

Naturally, this attribute is only useful for groups which are resizable.

TYPE
Number

APPLICABILITY
I

119

19 HLine class

19.1 Overview

HLine class derives from Area class and creates a horizontal divider line which can be used
separate groups of widgets. There is also VLine class which creates vertical divider lines.
See Section 59.1 [VLine class], page 293, for details.

HLine class doesn’t define any attributes.

121

20 Hollywood class

20.1 Overview

Hollywood class derives from Area class and allows you to embed a complete Hollywood
display inside your GUI as a widget. Whenever you draw something to a Hollywood display
that is attached to a widget, it will automatically be drawn into your widget as well. You
can even hide the Hollywood display and it will still work. Furthermore, all mouse clicks
and key strokes that happen inside Hollywood class will be forwarded to the corresponding
widget as normal Hollywood events. Thus, Hollywood class allows you to transparently use
almost all of Hollywood’s powerful features inside a widgets.

Here is an example of how to embed Hollywood display 1 inside your GUI:

<hollywood display="1"/>

Note that by default Hollywood widgets are not resizable. You can change this by setting
the Area.FixWidth and Area.FixHeight attributes accordingly. If you set one of those
attributes to False, you will get a resizable Hollywood widget and just like with normal
Hollywood displays, your Hollywood widget will also be sent a SizeWindow message when-
ever the widget size changes. You can then adapt your widget’s content to the new size.

Also note that by default, all Hollywood widgets might be scaled to fit to the current
monitor’s DPI setting. If you don’t want that, you can set the ScaleHollywood tag in
@REQUIRE to False. See Section 3.12 [High-DPI support], page 20, for details.

See Section 3.19 [Hollywood bridge], page 26, for details.

20.2 Hollywood.Display

NAME
Hollywood.Display – set Hollywood display to use

FUNCTION
Attach a Hollywood display to the object. You have to specify the identifier of a Holly-
wood display here.

This attribute is mandatory and has to be specified whenever you create a Hollywood
object. You cannot create an empty Hollywood object without an attached display.

By default, the widget won’t be resizable. You can change this by setting the
Area.FixWidth and Area.FixHeight attributes to False. In that case, your
Hollywood widget will become resizable and whenever the user resizes the window, your
Hollywood display will get a "SizeWindow" event which you can listen to using the
InstallEventHandler() function. You can then react on this event accordingly and
redraw your display, etc.

TYPE
Number

APPLICABILITY
IS

122 RapaGUI manual

20.3 Hollywood.DropFile

NAME
Hollywood.DropFile – learn about dropped files (V1.1)

FUNCTION
When setting up a notification on this attribute, RapaGUI will run your event call-
back whenever one or more files have been dropped onto the Hollywood widget. The
TriggerValue field of the message table will be set to a table that contains a list of all
files that have been dropped onto the widget.

Additionally, the message table will contain the following two extra fields:

X: The x-position where the user has dropped the file(s). This will be relative
to the widget’s left corner.

Y: The y-position where the user has dropped the file(s). This will be relative
to the widget’s top corner.

See Section 3.7 [Notifications], page 13, for details.

Note that Hollywood.DropFile is only ever triggered if Hollywood.DropTarget has
been set to True first.

TYPE
Boolean

APPLICABILITY
N

20.4 Hollywood.DropTarget

NAME
Hollywood.DropTarget – configure drop target settings (V1.1)

FUNCTION
Set this to True if files can be dropped on this Hollywood widget. You can listen to the
Hollywood.DropFile attribute to learn when the user drops one or more files on the
Hollywood widget.

TYPE
Boolean

APPLICABILITY
ISG

123

21 HSpace class

21.1 Overview

HSpace class derives from Area class and creates objects of a fixed device-independent pixel
size. This is typically used to fine-tune the GUI layout. To create padding objects that
are freely resizable, you can use Rectangle class instead. See Section 41.1 [Rectangle class],
page 209, for details.

21.2 HSpace.Width

NAME
HSpace.Width – set horizontal space

FUNCTION
Sets the desired horizontal space for this object in device-independent pixels.

TYPE
Number

APPLICABILITY
I

125

22 HSplitter class

22.1 Overview

HSplitter class is a special variant of Group class. It creates a horizontal group of two
children with a sash between them that allows the user to individually adjust the sizes of
the group’s two children by dragging the sash.

Note that HSplitter groups must always contain exactly two children. Additionally, the
children must also be sizable because HSplitter class allows its children to be resized. Here
is an example XML excerpt for creating a horizontal splitter layout with two textviews:

<hsplitter>

<textview>One</textview>

<textview>Two</textview>

</hsplitter>

HSplitter class is available since RapaGUI 2.0.

22.2 HSplitter.Border

NAME
HSplitter.Border – set sash border style (V2.0)

FUNCTION
Set this to False to make the sash use a different border style. Note that this is not
supported on all platforms.

TYPE
Boolean

APPLICABILITY
I

22.3 HSplitter.Gravity

NAME
HSplitter.Gravity – set/get sash gravity (V2.0)

FUNCTION
Set or get the sash gravity. Gravity is a value between 0 and 100 which controls the
position of the sash while resizing the splitter group. The gravity value tells splitter
group how much the left child will grow while resizing. For example:

− 0: Only the right child is automatically resized.

− 50: Both children grow by equal size.

− 100: Only the left child grows.

The default sash gravity is 0.

TYPE
Number

126 RapaGUI manual

APPLICABILITY
SG

22.4 HSplitter.MinPaneSize

NAME
HSplitter.MinPaneSize – set/get minimum pane size (V2.0)

FUNCTION
Set or get the minimum pane size. The default minimum pane size is 0, which means
that either pane can be reduced to zero by dragging the sash, thus removing one of the
panes. To prevent this behaviour (and veto out-of-range sash dragging), set a minimum
size, for example 20.

This value is in device-independent pixels.

TYPE
Number

APPLICABILITY
ISG

22.5 HSplitter.Position

NAME
HSplitter.Position – set/get sash position (V2.0)

FUNCTION
Set or get the position of the sash dividing the group’s children. This value is in device-
independent pixels.

TYPE
Number

APPLICABILITY
SG

22.6 HSplitter.Split

NAME
HSplitter.Split – split the panes (V2.0)

SYNOPSIS
moai.DoMethod(id, "Split", pos)

FUNCTION
This splits the group into two panes. The pos argument specifies the position of the
sash in device-independent pixels. If this value is positive, it specifies the size of the left
pane. If it is negative, its absolute value gives the size of the right pane. Finally, specify
0 to choose the default position (half of the total window width).

Chapter 22: HSplitter class 127

INPUTS

id id of the splitter object

pos desired sash position

22.7 HSplitter.Unsplit

NAME
HSplitter.Unsplit – unsplit the panes (V2.0)

SYNOPSIS
moai.DoMethod(id, "Unsplit", idx)

FUNCTION
This unsplits the panes and hides the pane specified in idx. If idx is 0, the left pane will
be hidden, if it is 1, the right pane will be hidden. To make both panes visible again,
use the HSplitter.Split method.

INPUTS

id id of the splitter object

idx index of pane to remove

129

23 HTMLview class

23.1 Overview

HTMLview class derives from Area class and creates a widget which displays a HTML page
either provided as raw data or as a file source stored locally or on a remote server. It also
supports some browser features like a history of visited pages and the ability to step through
this history.

OnWindows and macOS this class uses an HTML control provided by the OS. On Linux this
class requires WebKitGTK+ to be installed. Since this is not available on every system, there
is also a separate RapaGUI version without this class and thus without a WebKitGTK+
dependency. On AmigaOS and compatibles this class requires the HTMLview.mcc extension.

23.2 HTMLview.CanGoBack

NAME
HTMLview.CanGoBack – learn if browser can go backward

FUNCTION
This attribute is set to True whenever there is a page in the history that the browser
can go back to. You can set up a notification on this attribute and disable/enable the
"Back" button of your toolbar depending on the state of this attribute.

TYPE
Boolean

APPLICABILITY
GN

23.3 HTMLview.CanGoForward

NAME
HTMLview.CanGoForward – learn if browser can go forward

FUNCTION
This attribute is set to True whenever there is a page in the history that the browser
can go forward to. You can set up a notification on this attribute and disable/enable
the "Forward" button of your toolbar depending on the state of this attribute.

TYPE
Boolean

APPLICABILITY
GN

130 RapaGUI manual

23.4 HTMLview.ClearHistory

NAME
HTMLview.ClearHistory – clear history

SYNOPSIS
moai.DoMethod(id, "ClearHistory")

FUNCTION
Clears the browser history.

INPUTS

id id of the HTMLview object

23.5 HTMLview.Contents

NAME
HTMLview.Contents – set/get widget contents

FUNCTION
Set or get the HTML data displayed by the widget. If you set this attribute, you have
to pass valid HTML formatted code to the widget. Getting this attribute allows you to
obtain the source code of the page currently viewed.

TYPE
String

APPLICABILITY
ISG

23.6 HTMLview.File

NAME
HTMLview.File – set/get file to show

FUNCTION
Set the file to be shown in the widget. This is usually a HTML page but you could also
pass a path to an image.

Note that in contrast to HTMLview.URL this attribute expects just a normal path to a
file, i.e. don’t use the file:// protocol prefix here.

TYPE
String

APPLICABILITY
ISG

Chapter 23: HTMLview class 131

23.7 HTMLview.GoBack

NAME
HTMLview.GoBack – step backwards through the history

SYNOPSIS
moai.DoMethod(id, "GoBack")

FUNCTION
Navigates back in the history of visited pages.

INPUTS

id id of the HTMLview object

23.8 HTMLview.GoForward

NAME
HTMLview.GoForward – step forward through the history

SYNOPSIS
moai.DoMethod(id, "GoForward")

FUNCTION
Navigates forward in the history of visited pages.

INPUTS

id id of the HTMLview object

23.9 HTMLview.Reload

NAME
HTMLview.Reload – reload current page

SYNOPSIS
moai.DoMethod(id, "Reload")

FUNCTION
Reloads the current page.

INPUTS

id id of the HTMLview object

23.10 HTMLview.Search

NAME
HTMLview.Search – search current page

SYNOPSIS
found = moai.DoMethod(id, "Search", t$, flags$)

132 RapaGUI manual

FUNCTION
Search the current page for t$ and if found, scroll the result into view and select it.

flags$ can be a combination of the following flags:

CaseSensitive

Search in a case sensitive manner.

Backwards

Search in reverse direction.

If you specify multiple options in flags$, separate them using a semicolon.

INPUTS

id id of the HTMLview object

t$ string to search for

flags$ combination of flags or empty string for default options

RESULTS

found returns True or False, depending on whether the text was found (V2.0)

23.11 HTMLview.Title

NAME
HTMLview.Title – get title of current page

FUNCTION
Gets the title of the page currently viewed, i.e. the value of the <title> tag.

TYPE
String

APPLICABILITY
G

23.12 HTMLview.URL

NAME
HTMLview.URL – set/get current URL

FUNCTION
Set the URL to be shown in the widget. This URL must include the protocol prefix,
typically http://. When opening local files you have to use file:// as a protocol but
you could also just use HTMLview.File instead which is more convenient in this case.

TYPE
String

APPLICABILITY
ISG

133

24 Hyperlink class

24.1 Overview

Hyperlink class derives from Area class and creates a clickable text object that opens the
specified URL in a browser when the user clicks on it. Here is an example XML excerpt
for creating a hyperlink widget that will open http://www.hollywood-mal.com when you
click on it:

<hyperlink>http://www.hollywood-mal.com</hyperlink>

If you don’t want the URL to be shown, you can use the Hyperlink.Label attribute to set
a different label for the hyperlink object, for example:

<hyperlink label="Click me">http://www.hollywood-mal.com</hyperlink>

Hyperlink class is available since RapaGUI 2.0.

24.2 Hyperlink.Label

NAME
Hyperlink.Label – set/get label text (V2.0)

FUNCTION
Set or get the label text to be shown by the hyperlink widget. If this is not specified,
the hyperlink widget will show the URL that has been set using Hyperlink.URL.

TYPE
String

APPLICABILITY
ISG

24.3 Hyperlink.URL

NAME
Hyperlink.URL – set/get target URL (V2.0)

FUNCTION
Set or get the target URL that should be opened in a browser when the user clicks on
the hyperlink widget. This must always be provided.

TYPE
String

APPLICABILITY
SG

http://www.hollywood-mal.com

135

25 Image class

25.1 Overview

Image class derives from Area class and shows the specified image. The image pixel data is
taken from a Hollywood brush or icon, depending on what is set in Image.BrushType.

Here is an example XML declaration:

<image brush="1"/>

The XML code above creates an image object from Hollywood brush number 1. Image
class fully supports mask and alpha channel transparency in Hollywood brushes/icons so
you can also embed images with transparent areas.

25.2 Image.Brush

NAME
Image.Brush – set image to display

FUNCTION
Set this attribute to the identifier of a Hollywood brush or icon to specify the image
that should be shown by the widget. Whether this attribute expects a Hollywood brush
or icon, depends on what you specify in the Image.BrushType attribute. As the name
implies, Image.Brush expects a Hollywood brush by default.

Image class fully supports mask and alpha channel transparency in Hollywood
brushes/icons so you can also embed images with transparent areas.

Note that RapaGUI might scale the image to fit to the current monitor’s DPI setting.
Please read the chapter on high-DPI support for more information. See Section 3.12
[High-DPI support], page 20, for details.

TYPE
Number

APPLICABILITY
IS

25.3 Image.BrushScale

NAME
Image.BrushScale – configure automatic image scaling (V2.0)

FUNCTION
If Image.Brush has been set to a raster brush and RapaGUI is running on a high-DPI
display, RapaGUI will automatically scale the brush’s raster graphics to fit to the current
monitor’s DPI setting. If you don’t want that, set this tag to False.

Alternatively, you can also globally disable automatic image scaling by setting the
ScaleGUI tag to False when calling @REQUIRE on RapaGUI. See Section 3.4 [Initial-
izing RapaGUI], page 11, for details.

136 RapaGUI manual

Please also read the chapter about high-DPI support in RapaGUI to learn more about
supporting high-DPI displays. See Section 3.12 [High-DPI support], page 20, for details.

TYPE
Boolean

APPLICABILITY
I

25.4 Image.BrushType

NAME
Image.BrushType – set image type to use (V2.0)

FUNCTION
This attribute allows you to set the type of the Hollywood image object passed in the
Image.Brush attribute. By default, Image.Brush expects a Hollywood brush. By setting
Image.BrushType, however, you can make it use a different Hollywood image type.

The following image types are currently available:

Brush Use a Hollywood brush. This is the default type. You can use either raster
or vector brushes. Vector brushes have the advantage that they can be
scaled to any resolution without losses in quality. This is very useful when
designing applications that should be compatible with high-DPI monitors.
See Section 3.12 [High-DPI support], page 20, for details.

Icon Use a Hollywood icon. This image type has the advantage that it can contain
several subimages of different sizes. This makes it possible to provide images
in different resolutions which can be very useful when designing applications
that should be compatible with high-DPI monitors. See Section 3.12 [High-
DPI support], page 20, for details.

Note that you can globally change the default this attribute to Hollywood icons by setting
the Application.UseIcons tag. See Section 9.13 [Application.UseIcons], page 65, for
details.

TYPE
String (see above for possible values)

APPLICABILITY
I

137

26 Label class

26.1 Overview

Label class derives from Area class and creates labels for your widgets. Labels typically
contain an underscore character to indicate the shortcut for accessing the widget that a
label describes.

Here is an example of how to use the <label> command:

<hgroup>

<label>_Name</label>

<textentry/>

</hgroup>

The code above sets up a text entry widget that is labelled "Name". It also sets up a
shortcut: When the user presses ALT+N, the text entry widget is automatically activated.
See Section 3.13 [Keyboard shortcuts], page 21, for details.

Please note that labels are not resizable horizontally. That is why they can easily block
resizing of your whole GUI. To circumvent this problem, you can simply put the label in a
<hgroup> together with an empty <rectangle> object. See Section 41.1 [Rectangle class],
page 209, for details.

26.2 Label.Align

NAME
Label.Align – set label alignment

FUNCTION
Set the desired alignment for the label. This can be one of the following values:

Left Left alignment.

Right Right alignment. This is the default.

Center Centered alignment.

TYPE
String (see above for possible values)

APPLICABILITY
I

26.3 Label.Text

NAME
Label.Text – set/get label text

FUNCTION
Set or get the label text. If the text contains an underscore, the character following the
underscore will automatically be highlighted as the accelerator key. You can disable this
behaviour by setting the Area.NoAutoKey attribute.

138 RapaGUI manual

TYPE
String

APPLICABILITY
SG

139

27 Listview class

27.1 Overview

Listview class derives from Area class and shows a list container that can be filled with data
items. RapaGUI’s listview class is very powerful and supports multi-column lists, check-
boxes, editable list items, data sorting via custom callbacks, and icons for the individual
listview items.

When creating a listview in XML code, you always have to add at least one column to
it. This is done by using Listviewcolumn class. Here is an example of a minimal listview
declaration with just a single column:

<listview>

<column/>

</listview>

It is also possible to add some entries to the listview right at declaration time. This can be
done by using the <item> tag:

<listview>

<column>

<item>Entry 1</item>

<item>Entry 2</item>

<item>Entry 3</item>

</column>

</listview>

If you want to have a multi-column list, you need to use the <column> tag several times.
Here is an example:

<listview>

<column title="Column 1">

<item>Entry 1</item>

<item>Entry 2</item>

<item>Entry 3</item>

</column>

<column title="Column 2">

<item>Entry 1</item>

<item>Entry 2</item>

<item>Entry 3</item>

</column>

<column title="Column 3">

<item>Entry 1</item>

<item>Entry 2</item>

<item>Entry 3</item>

</column>

</listview>

In this example we have also made use of the Listviewcolumn.Title attribute to add
a title bar to each of our columns. There are some more attributes that you can use to
customize the appearance of your columns. For example, you can add checkboxes to your

140 RapaGUI manual

columns and allow the editing of column items. See Section 28.1 [Listviewcolumn class],
page 163, for details.

Note that RapaGUI might use up to three different kinds of widgets for this class: In case
you are creating a listview that doesn’t use any advanced functionality (such as multiple
columns, icons, sorting) RapaGUI might create a more basic list widget for you because
some operating systems offer several kinds of list-based widgets, e.g. on Windows there
is a Listbox widget and a Listview widget. RapaGUI will use the Listbox widget in case
your listview doesn’t use any of the advanced features because listboxes are usually faster
than listviews. If you don’t want that, you can force RapaGUI to always give you a full-
blown listview by setting the Listview.ForceMode attribute to the according tag. See
Section 27.17 [Listview.ForceMode], page 146, for details.

27.2 Listview.AbortEditing

NAME
Listview.AbortEditing – get notified when user cancels editing (V1.1)

FUNCTION
When setting up a notification on this attribute, RapaGUI will run your event callback
whenever the user cancels an editing operation on an item, for example by pressing the
escape key or clicking outside the item edit widget.

Note that you have to set Listviewcolumn.Editable to True before you can use this
attribute.

Your event handler will be called with the following extra arguments:

Row: Row index of the item which the user was editing when he cancelled the
operation.

Column: Column index of the item which the user was editing when he cancelled the
operation.

See Section 3.7 [Notifications], page 13, for details.

TYPE
Boolean

APPLICABILITY
N

27.3 Listview.Active

NAME
Listview.Active – set/get active list entry

FUNCTION
This attribute can be used to set or get the active list entry. This will always be between
0 and Listview.Entries-1 or the special value -1 in case there currently is no active
entry.

If you set this attribute the listview will automatically scroll the position of the specified
entry into view.

Chapter 27: Listview class 141

Besides an absolute index, you can also pass the following special values here:

Off Clear selection.

Top Select first entry.

Bottom Select last entry.

Up Select previous entry.

Down Select next entry.

PageUp Move list cursor one page up.

PageDown Move list cursor one page down.

You can also set up a notification on this attribute to get notified whenever the active
entry is changed.

TYPE
Number or string (see above for possible values)

APPLICABILITY
ISGN

27.4 Listview.Alternate

NAME
Listview.Alternate – use alternating row colors

FUNCTION
Set this attribute to True to make the listview appear with alternating row colors.

Note that on AmigaOS and compatibles, this feature requires at least MUI 5.0.

TYPE
Boolean

APPLICABILITY
I

27.5 Listview.Clear

NAME
Listview.Clear – clear listview

SYNOPSIS
moai.DoMethod(id, "Clear")

FUNCTION
Remove all entries from listview.

INPUTS

id id of the listview object

142 RapaGUI manual

27.6 Listview.ClickColumn

NAME
Listview.ClickColumn – learn about column clicks

FUNCTION
In multi-column listviews, this attribute records the number of the column where the
user last clicked.

TYPE
Number

APPLICABILITY
GN

27.7 Listview.Columns

NAME
Listview.Columns – get number of columns (V2.0)

FUNCTION
Get number of listview columns.

TYPE
Number

APPLICABILITY
G

27.8 Listview.CompareItems

NAME
Listview.CompareItems – determine how entries should be sorted

FUNCTION
When setting up a notification on this attribute, RapaGUI will run your event callback
whenever it needs to sort the list entries. The callback function will receive two entries
as arguments and it has to determine which entry should be put first.

Your event handler will be called with the following extra arguments:

Entry1: The first entry.

Entry2: The second entry.

Your callback function then has to return a value that indicates how the two entries
should be aligned in the listview. If entry 1 should be placed before 2, your callback has
to return -1. If entry 1 should be placed after entry 2, your callback has to return 1. If
the two entries are the same, return 0.

See Section 3.7 [Notifications], page 13, for details.

Chapter 27: Listview class 143

TYPE
Boolean

APPLICABILITY
N

27.9 Listview.DefClickColumn

NAME
Listview.DefClickColumn – set default column

PLATFORMS
AmigaOS and compatibles only

FUNCTION
When controlling the listview using the keyboard and pressing RETURN, the column
number set here will be used as the default for Listview.ClickColumn.

TYPE
Number

APPLICABILITY
ISG

27.10 Listview.DoubleClick

NAME
Listview.DoubleClick – learn about double click on listview

FUNCTION
Set up a notification on this attribute to learn about double clicks on listview entries.

TYPE
Boolean

APPLICABILITY
N

27.11 Listview.DropFile

NAME
Listview.DropFile – learn about dropped files (V1.1)

FUNCTION
When setting up a notification on this attribute, RapaGUI will run your event call-
back whenever one or more files have been dropped onto the listview widget. The
TriggerValue field of the message table will be set to a table that contains a list of all
files that have been dropped onto the widget.

144 RapaGUI manual

Additionally, the message table will contain the following two extra fields:

X: The x-position where the user has dropped the file(s). This will be relative
to the widget’s left corner.

Y: The y-position where the user has dropped the file(s). This will be relative
to the widget’s top corner.

See Section 3.7 [Notifications], page 13, for details.

Note that Listview.DropFile is only ever triggered if Listview.DropTarget has been
set to True first.

TYPE
Boolean

APPLICABILITY
N

27.12 Listview.DropTarget

NAME
Listview.DropTarget – configure drop target settings (V1.1)

FUNCTION
Set this to True if files can be dropped on this listview widget. You can listen to the
Listview.DropFile attribute to learn when the user drops one or more files on the
listview widget.

TYPE
Boolean

APPLICABILITY
ISG

27.13 Listview.Edit

NAME
Listview.Edit – prompt user to edit an item

SYNOPSIS
moai.DoMethod(id, "Edit", row, column)

FUNCTION
This method can be used to programmatically initiate item editing. Normally, item
editing is started by the user by slowly double-clicking an item. This method provides
an alternative to this user mechanism.

This will only work if Listviewcolumn.Editable has been set to True for the respective
listview column.

When the user has finished editing, the Listview.ValueChange attribute will be trig-
gered.

Chapter 27: Listview class 145

Note that if you have installed a listener on the Listview.StartEditing attribute, then
this callback will be asked for permission first before editing is actually started.

To learn about editing operations getting cancelled, you can listen to the
Listview.AbortEditing attribute.

Also note that on AmigaOS and compatibles this feature is only available on MUI 4.0
or higher.

INPUTS

id id of the listview object

row row index of the item to edit

column column index of the item to edit

27.14 Listview.Entries

NAME
Listview.Entries – get listview entries

FUNCTION
Return the current number of entries in the listview.

TYPE
Number

APPLICABILITY
G

27.15 Listview.Exchange

NAME
Listview.Exchange – exchange two entries

SYNOPSIS
moai.DoMethod(id, "Exchange", pos1, pos2)

FUNCTION
Exchange two entries in a listview. The positions can be passed either as absolute values
starting from 0 to Listview.Entries-1 or as one of the following special values:

Top Use first entry.

Active Use active entry.

Bottom Use last entry.

Next Use next entry. This is only valid in the second parameter.

Previous Use previous entry. This is only valid in the second parameter.

This method can only be used with non-sortable listviews because the item order in
sortable listviews is fixed and determined solely by the entries in the column that cur-
rently has the sort focus.

146 RapaGUI manual

INPUTS

id id of the listview object

pos1 number of the first entry

pos2 number of the second entry

27.16 Listview.First

NAME
Listview.First – get first visible entry

FUNCTION
Get the first visible listview entry.

TYPE
Number

APPLICABILITY
SG

27.17 Listview.ForceMode

NAME
Listview.ForceMode – override default listview mode

FUNCTION
RapaGUI can use up to three different widgets for Listview class depending on your
settings. For example, in case a single-column list with no icons and headings is used,
RapaGUI might use a different widget for reasons of efficiency in case the host OS
provides such a widget. For example, on Windows RapaGUI will use the Listbox control
instead of a fully featured Listview in those cases. If you don’t want that, set this
attribute to the desired widget and RapaGUI will try to use it.

The following modes are currently recognized:

Normal Automatically selects the widget that fits best. This is the default.

Listbox Use a Listbox widget. Listbox widgets only support a single column, no
icons, no headings, no check boxes, no editable entries and no hidden
columns.

Listview Use a Listview widget. Listview widgets support everything instead of check
boxes, editable entries, right and center alignment and hiding columns.

Dataview Use a Dataview widget. Supports everything but currently uses a generic
implementation on Windows.

Note that on AmigaOS and compatibles this attribute doesn’t have any effect since
RapaGUI always uses the same widget on those platforms.

TYPE
String (see above for possible values)

Chapter 27: Listview class 147

APPLICABILITY
I

27.18 Listview.GetColumnID

NAME
Listview.GetColumnID – get column id (V2.0)

SYNOPSIS
id$ = moai.DoMethod(id, "GetColumnID", pos)

FUNCTION
Returns the identifier of the column at the position specified by pos. pos can either
be an absolute index starting from 0 for the first column or one of the following special
values:

First Use first column.

Last Use last column.

INPUTS

id id of the listview object

pos absolute index of column or special value (see above)

RESULTS

id$ id of the column at the specified index

27.19 Listview.GetDisabled

NAME
Listview.GetDisabled – get checkbox disabled state

SYNOPSIS
state = moai.DoMethod(id, "GetDisabled", row, column)

FUNCTION
Returns the disabled state of the checkbox in the specified row and column. This is
either True or False.

INPUTS

id id of the listview object

row row index of the checkbox

column column index of the checkbox

RESULTS

state True if the checkbox is disabled, False otherwise

148 RapaGUI manual

27.20 Listview.GetEntry

NAME
Listview.GetEntry – get listview entry

SYNOPSIS
column1$, ... = moai.DoMethod(id, "GetEntry", pos[, icons])

FUNCTION
Get an entry from a listview. You can pass either an absolute index in pos or the special
value Active to get the active entry. Listview.GetEntry will then return the entries of
all columns in the row specified by pos. You will get as many return values as there are
columns in the listview.

Starting with RapaGUI 2.0, Listview.GetEntry accepts an optional icons argument
now. If this is set to True, Listview.GetEntry will also return the identifier of the
brush/icon used for a listview item or -1 if no brush/icon has been set for this item.
Note that the identifier is only returned for columns that have the Listviewcolumn.Icon
attribute set to True.

INPUTS

id id of the listview object

pos index of listview row or "Active"

icons optional: True if information about icons should be returned as well (V2.0)

RESULTS

column1$ entry data of first column

... further data if listview has multiple columns

27.21 Listview.GetSelection

NAME
Listview.GetSelection – get selected entries

SYNOPSIS
t = moai.DoMethod(id, "GetSelection")

FUNCTION
Returns a table containing all selected entries of a multi-select listview. Note that this
should only be used with multi-select listviews. For single-select listviews, you can use
Listview.Active to get the selected entry.

INPUTS

id id of the listview object

RESULTS

t table containing selected entries

Chapter 27: Listview class 149

27.22 Listview.GetState

NAME
Listview.GetState – get checkbox toggle state

SYNOPSIS
state = moai.DoMethod(id, "GetState", row, column)

FUNCTION
Returns the toggle state of the checkbox in the specified row and column. This is either
True if the checkbox is selected or False otherwise.

INPUTS

id id of the listview object

row row index of the checkbox

column column index of the checkbox

RESULTS

state True if the checkbox is selected, False otherwise

27.23 Listview.HRules

NAME
Listview.HRules – draw horizontal rules between rows

PLATFORMS
Windows, Linux, macOS

FUNCTION
Set this to True to enable horizontal rules between rows for the listview.

TYPE
Boolean

APPLICABILITY
I

27.24 Listview.Insert

NAME
Listview.Insert – insert new entry

SYNOPSIS
pos = moai.DoMethod(id, "Insert", pos, [icon1,] column1$, ...)

FUNCTION
Insert one new entry into the listview. If the listview has multiple columns, you need to
pass individual entry data for all the columns in the listview.

The entry data consists of a text string and, if the column has the Listviewcolumn.Icon
attribute set, an icon for each column. The icon has to be passed before the text string

150 RapaGUI manual

and it has to be an identifier of a Hollywood brush/icon which should be used as the icon
for the entry. If Listviewcolumn.Icon isn’t set, then you must omit the icon parameter
and only pass text data for the listview entry. If you’ve set Listviewcolumn.Icon to
True and you don’t want to show an icon in this particular row and column, you can
also pass the special value -1. In that case, RapaGUI won’t show an icon even though
Listviewcolumn.Icon has been set to True. Please note that auto-generated IDs cannot
be used. Please also read about RapaGUI’s image cache to learn more about icon support
in RapaGUI. See Section 3.20 [Image cache], page 30, for details.

In case a column is showing a checkbox, you have to pass "On", "True", or "1" to select
the checkbox and any other text to deselect the checkbox.

The insert position is specified in the pos argument. The new entry will be added in
front of the entry specified by pos. This can be an absolute index position starting at 0
for the first entry or one of the following special values:

Top Insert as first entry.

Active Insert before the active entry. If there is no active entry, the entry will be
inserted at the very top of the list.

Bottom Insert as last entry.

If pos is bigger or equal to the number of entries in the listview, the entry will be inserted
as the last entry.

If the listview has sortable columns, pos will be ignored and the entry will automatically
be sorted into the listview, depending on which column currently has the sort focus. See
Section 27.40 [Listview.SortColumn], page 158, for details.

Listview.Insert returns the position of the newly inserted entry. This is especially
useful when the listview has sortable columns because in that case, you can’t easily
compute where the entry will end up in the listview.

Note that on AmigaOS and compatibles icon support is only available with MUI 4.0 or
better.

INPUTS

id id of the listview object

pos insert position as absolute number or special value (see above)

icon1 optional: icon for the first column; this must only be passed if the column
has the icon attribute set; note that this must be a numeric identifier and
auto-generated IDs are not valid in this case

column1$ entry to insert into first column

... more entries if listview has multiple columns

RESULTS

pos position of the newly inserted entry (starting from 0)

Chapter 27: Listview class 151

27.25 Listview.InsertColumn

NAME
Listview.InsertColumn – insert new column (V2.0)

SYNOPSIS
moai.DoMethod(id, "InsertColumn", pos, cid$[, t])

FUNCTION
Insert a new column into the listview. The column will be inserted into the position
specified by pos and will be given the identifier specified by cid$. The new column will
be added in front of the column specified by pos. This can be an absolute index position
starting at 0 for the first column or one of the following special values:

First Insert as first column.

Last Insert as last column.

The optional argument t can be set to a table containing one or more of the following
options:

Align Desired column alignment. See Section 28.2 [Listviewcolumn.Align],
page 163, for details.

Checkbox Flag indicating if column should use checkboxes. See Section 28.3 [Listview-
column.Checkbox], page 163, for details.

Editable Flag indicating if column should be editable. See Section 28.4 [Listviewcol-
umn.Editable], page 164, for details.

Hide Flag indicating if column should be hidden. See Section 28.5 [Listviewcol-
umn.Hide], page 164, for details.

Icon Flag indicating whether column should use icons. See Section 28.6 [Listview-
column.Icon], page 165, for details.

IconType Icon type to use. See Section 28.8 [Listviewcolumn.IconType], page 166, for
details.

IconScale

Toggle icon scaling. See Section 28.7 [Listviewcolumn.IconScale], page 165,
for details.

Sortable Flag indicating if column should be sortable. See Section 28.9 [Listviewcol-
umn.Sortable], page 167, for details.

SortOrder

Desired column sort order. See Section 28.10 [Listviewcolumn.SortOrder],
page 167, for details.

Title Desired column title. See Section 28.11 [Listviewcolumn.Title], page 167, for
details.

Width Desired column width. See Section 28.12 [Listviewcolumn.Width], page 168,
for details.

152 RapaGUI manual

Note that Listview.InsertColumn is only supported if the listview is in Listview or
Dataview mode. See Section 27.17 [Listview.ForceMode], page 146, for details.

INPUTS

id id of the listview object

pos insert position as absolute number or special value (see above)

cid$ identifier for new column

t optional: table containing further parameters

27.26 Listview.ItemStyle

NAME
Listview.ItemStyle – set listview item style (V2.0)

PLATFORMS
Android

FUNCTION
On Android, you can specify a style that should be used for the listview items. This can
be one of the following special values:

Default The default style.

Normal Normal list item style. This corresponds to the style android.R.layout.simple_
list_item_1.

Big Use big list item. This corresponds to the style android.R.layout.simple_
expandable_list_item_1.

TYPE
String (see above for possible values)

APPLICABILITY
I

27.27 Listview.Jump

NAME
Listview.Jump – scroll to an entry

SYNOPSIS
moai.DoMethod(id, "Jump", pos)

FUNCTION
Scroll the specified entry into the visible part of the listview. pos can be an absolute
index or one of the following special values:

Top Scroll top entry into view.

Active Scroll active entry into view.

Chapter 27: Listview class 153

Bottom Scroll last entry into view.

INPUTS

id id of the listview object

pos number of the entry that should be made visible or special value (see above)

27.28 Listview.LongClick

NAME
Listview.LongClick – learn about long click on listview (V2.0)

PLATFORMS
Android

FUNCTION
Set up a notification on this attribute to learn about long clicks on listview entries. Long
clicks are currently only triggered on Android when the user taps a listview item for a
longer time.

TYPE
Boolean

APPLICABILITY
N

27.29 Listview.Move

NAME
Listview.Move – move entry to new position

SYNOPSIS
moai.DoMethod(id, "Move", from, to)

FUNCTION
Move the specified entry to a new position. Positions have to be passed as absolute values
starting from 0 to Listview.Entries-1 or pass one of the following special values:

Top Use first entry.

Active Use active entry.

Bottom Use last entry.

Next Use next entry. This is only valid for the second parameter.

Previous Use previous entry. This is only valid for the second parameter.

This method can only be used with non-sortable listviews because the item order in
sortable listviews is fixed and determined solely by the entries in the column that cur-
rently has the sort focus.

154 RapaGUI manual

INPUTS

id id of the listview object

from number of the first entry

to number of the second entry

27.30 Listview.MultiSelect

NAME
Listview.MultiSelect – enable multi select mode

FUNCTION
Set this attribute to True to allow the selection of multiple entries in this listview. By
default, only a single entry can be selected at a time.

TYPE
Boolean

APPLICABILITY
I

27.31 Listview.Quiet

NAME
Listview.Quiet – disable listview refresh

FUNCTION
Adding or removing many entries at once is usually quite expensive because the widget
is refreshed after every add and remove operation. Setting Listview.Quiet to True will
temporarily turn off listview refresh until you set the attribute to False again. This can
speed up insertion and remove operations significantly in case lots of entries are affected.

TYPE
Boolean

APPLICABILITY
S

27.32 Listview.Remove

NAME
Listview.Remove – remove entry from listview

SYNOPSIS
moai.DoMethod(id, "Remove", pos)

Chapter 27: Listview class 155

FUNCTION
Remove an entry from a listview. The position can be specified as an absolute index
value or as one of the following special values:

First Remove first entry.

Active Remove active entry.

Last Remove last entry.

When the active entry is removed, the following entry will become active.

INPUTS

id id of the listview object

pos index of entry to remove or one of the special values (see above)

27.33 Listview.RemoveColumn

NAME
Listview.RemoveColumn – remove column (V2.0)

SYNOPSIS
moai.DoMethod(id, "RemoveColumn", pos)

FUNCTION
Remove the column at index pos from the listview. pos can be an absolute index position
starting from 0 for the first column or one of the following special values:

First Remove first column.

Last Remove last column.

Note that Listview.RemoveColumn is only supported if the listview is in Listview or
Dataview mode. See Section 27.17 [Listview.ForceMode], page 146, for details.

INPUTS

id id of the listview object

pos remove position as absolute index or special value (see above)

27.34 Listview.Rename

NAME
Listview.Rename – rename an entry

SYNOPSIS
moai.DoMethod(id, "Rename", pos, [icon1,] column1$, ...)

FUNCTION
Rename the listview entry at the specified position. If the listview has multiple columns,
you need to pass a new name for every column. It is not possible to rename only a single

156 RapaGUI manual

column entry - this method always affects the complete row so you need to pass as many
strings as there are columns in your listview.

For all columns that have the Listviewcolumn.Icon attribute set, you also need to
pass an icon before the actual text. The icon has to be an identifier of a Hollywood
brush/icon which should be used as the icon for the column. If Listviewcolumn.Icon
isn’t set, then you must omit the icon parameter and only pass text data for the listview
entry. If you’ve set Listviewcolumn.Icon to True and you don’t want to show an icon
in this particular row and column, you can also pass the special value -1. In that case,
RapaGUI won’t show an icon even though Listviewcolumn.Icon has been set to True.
Please note that auto-generated IDs cannot be used. Please also read about RapaGUI’s
image cache to learn more about icon support in RapaGUI. See Section 3.20 [Image
cache], page 30, for details.

In case a column is showing a checkbox, you have to pass "On", "True", or "1" to select
the checkbox and any other text to deselect the checkbox.

The entry position is specified in the pos argument. This can be an absolute index
position starting at 0 for the first entry or one of the following special values:

Active Rename the active entry.

Note that on AmigaOS and compatibles icon support is only available with MUI 4.0 or
better.

INPUTS

id id of the listview object

pos entry position as absolute number or special value (see above)

icon1 optional: icon for the first column; this must only be passed if the column
has the icon attribute set; note that this must be a numeric identifier and
auto-generated IDs are not valid in this case

column1$ new text for entry in the first column

... more entries if listview has multiple columns

27.35 Listview.RowHeight

NAME
Listview.RowHeight – set row height (V2.0)

FUNCTION
Set listview row height. Normally, this is not necessary because the row height is calcu-
lated automatically. However, it might be useful to set a specific row height when using
very large icons that would otherwise be cut off.

TYPE
Number

APPLICABILITY
I

Chapter 27: Listview class 157

27.36 Listview.Select

NAME
Listview.Select – (de)select listview entry

SYNOPSIS
state = moai.DoMethod(id, "Select", pos, seltype)

FUNCTION
Select or deselect a listview entry or query the selection state of an entry.

Pos can be either the number of the entry or one of the following special values:

Active Use the active entry.

All Use all entries.

Seltype can be one of the following:

Off Deselect entry.

On Select entry.

Toggle Toggle entry.

Ask Query selection state of specified entry. If this is set, Listview.Select returns
the selection state of the specified entry (either 1 or 0).

INPUTS

id id of the listview object

pos entry index or special value (see above)

seltype selection type (see above)

RESULTS

state selection state of entry; this is only valid when using "Ask" for seltype (see
above)

27.37 Listview.SetDisabled

NAME
Listview.SetDisabled – set checkbox disabled state

SYNOPSIS
moai.DoMethod(id, "SetDisabled", row, column, state)

FUNCTION
Sets the disabled state of the checkbox in the specified row and column. Pass True to
disable the checkbox or False to enable it.

INPUTS

id id of the listview object

row row index of the checkbox

column column index of the checkbox

state True if the checkbox should be disabled, False otherwise

158 RapaGUI manual

27.38 Listview.SetState

NAME
Listview.SetState – set checkbox toggle state

SYNOPSIS
moai.DoMethod(id, "SetState", row, column, state)

FUNCTION
Sets the toggle state of the checkbox in the specified row and column. Pass True to
select the checkbox or False to unselect it.

INPUTS

id id of the listview object

row row index of the checkbox

column column index of the checkbox

state True if the checkbox should be selected, False otherwise

27.39 Listview.Sort

NAME
Listview.Sort – sort the entries

SYNOPSIS
moai.DoMethod(id, "Sort")

FUNCTION
Sort all entries of the listview. It’s normally not necessary to call this function because
the listview will automatically sort all items as soon as there is a column that is sortable.

INPUTS

id id of the listview object

27.40 Listview.SortColumn

NAME
Listview.SortColumn – set/get sort column (V2.0)

FUNCTION
Set or get the column that should be used for sorting the listview entries. This must be
set to the index of the column that should get the sort focus. Column indices start at 0
for the first column. Note that you can only set columns as the sort columns that have
Listviewcolumn.Sortable set to True. The sort order can be configured by setting the
Listviewcolumn.SortOrder attribute.

Note that the user can also set the sort column by clicking on its header. If you’d like
to be notified about such events, you can install a listener on this attribute.

Chapter 27: Listview class 159

TYPE
Number

APPLICABILITY
ISGN

27.41 Listview.StartEditing

NAME
Listview.StartEditing – get notified about item editing

FUNCTION
When setting up a notification on this attribute, RapaGUI will run your event callback
whenever the user wants to edit a listview item by slowly double-clicking on it or when
your script runs the Listview.Edit method. Your callback can then permit or forbid
the user’s edit request. To forbid the request, your callback has to return False. To
permit the request, it has to return True.

Note that you have to set Listviewcolumn.Editable to True before you can use this
attribute.

Your event handler will be called with the following extra arguments:

Row: Row index of the item which the user wants to edit.

Column: Column index of the item which the user wants to edit.

See Section 3.7 [Notifications], page 13, for details.

TYPE
Boolean

APPLICABILITY
N

27.42 Listview.SystemTheme

NAME
Listview.SystemTheme – make listview use the system theme (V2.0)

PLATFORMS
Windows

FUNCTION
Set this to True to make the listview use the system’s theme. This is only
supported if Listview.ForceMode is set to Listview or if RapaGUI implicitly sets
Listview.ForceMode to Listview.

TYPE
Boolean

APPLICABILITY
I

160 RapaGUI manual

27.43 Listview.TitleClick

NAME
Listview.TitleClick – learn about title clicks

FUNCTION
This attribute is set to the column index number whenever the user clicks on a column
title button.

On AmigaOS and compatibles this attribute requires at least MUI 4.0.

TYPE
Number

APPLICABILITY
N

27.44 Listview.ValueChange

NAME
Listview.ValueChange – get notified when listview item value changes

FUNCTION
When setting up a notification on this attribute, RapaGUI will run your event callback
whenever a listview item’s value has changed because the user has toggled the checkbox
or has edited the item. Note that Listview.ValueChange will not trigger if the item’s
value was changed using the Listview.Rename method.

For items in checkbox columns, TriggerValue will be set to either True or False,
reflecting the new checkbox state. For items in text columns, TriggerValue will contain
the new item text.

Additionally, your event handler will be called with the following extra arguments:

Row: Row index of the item whose value has changed.

Column: Column index of the item whose value has changed.

See Section 3.7 [Notifications], page 13, for details.

TYPE
Boolean or string (depending on column type)

APPLICABILITY
N

27.45 Listview.Visible

NAME
Listview.Visible – get number of visible entries

FUNCTION
Get the number of entries in the listview that are currently visible.

Chapter 27: Listview class 161

TYPE
Number

APPLICABILITY
G

27.46 Listview.VRules

NAME
Listview.VRules – draw vertical rules between columns

FUNCTION
Set this to True to enable vertical rules between columns for the listview.

TYPE
Boolean

APPLICABILITY
I

163

28 Listviewcolumn class

28.1 Overview

Listviewcolumn class is needed when creating listviews. It allows you to specify different
attributes for the columns of your listviews.

Listviewcolumn class must always be embedded inside a <listview> declaration. Its XML
tag is <column>. See Section 27.1 [Listview class], page 139, for details.

Note that you cannot create instances of this class using moai.CreateObject(). Listview
column numbers are currently static, i.e. you cannot add or remove columns at runtime.

28.2 Listviewcolumn.Align

NAME
Listviewcolumn.Align – set/get column alignment

FUNCTION
Set or get the column alignment. This can be one of the following values:

Left Left alignment. This is the default.

Right Right alignment.

Center Centered alignment.

On non-AmigaOS systems this attribute is only supported for the dataview backend.
When creating a listview and Listviewcolumn.Align is set to a value other than Left,
RapaGUI will automatically switch to the dataview backend. If you don’t specify this
attribute at creation time but want to set it later using moai.Set(), you have to explicitly
request a dataview widget by setting the Listview.ForceMode attribute.

TYPE
String (see above for possible values)

APPLICABILITY
ISG

28.3 Listviewcolumn.Checkbox

NAME
Listviewcolumn.Checkbox – put column in checkbox mode

FUNCTION
Set this to True to mark this column as a checkbox column. Checkbox columns show
checkboxes instead of text. Whenever an item’s text in a checkbox column is set to
"On", "True", or "1", the checkbox will be selected. All other item texts will lead to an
unselected checkbox.

You can modify the states of the checkboxes either by using the Listview.Rename

method or by using the dedicated Listview.SetState method. Similarly, getting the

164 RapaGUI manual

state of a checkbox is possible via the Listview.GetEntry or Listview.GetState meth-
ods.

To get notified whenever the user toggles a checkbox state, you have to listen to the
Listview.ValueChange attribute.

Also note that Listviewcolumn.Checkbox and Listviewcolumn.Editable and
Listviewcolumn.Icon are mutually exclusive. You cannot create checkbox columns
that are editable or show icons.

TYPE
Boolean

APPLICABILITY
IG

28.4 Listviewcolumn.Editable

NAME
Listviewcolumn.Editable – allow editing of column items

FUNCTION
Set this to True to allow user editing of the items in this column. The user will then be
able to edit all items in this column by executing a slow double click, i.e. slowly pressing
left mouse button two times in a row.

If you would only like to allow editing of some items in the column, you need to set
this attribute to True and you need to listen to the Listview.StartEditing attribute.
Listview.StartEditing will then be triggered whenever the user attempts to edit
an item and your callback can return False to forbid editing of certain items. See
Section 27.41 [Listview.StartEditing], page 159, for details.

To get notified whenever the value of a listview item changes because the user has edited
it, you have to listen to the Listview.ValueChange attribute.

To manually start editing of a listview item, call the Listview.Edit method.

Also, Listviewcolumn.Checkbox and Listviewcolumn.Editable are mutually exclu-
sive. You cannot create editable checkbox columns.

Note that on AmigaOS and compatibles this feature is only available on MUI 4.0 or
higher.

TYPE
Boolean

APPLICABILITY
IG

28.5 Listviewcolumn.Hide

NAME
Listviewcolumn.Hide – show/hide listview column

Chapter 28: Listviewcolumn class 165

FUNCTION
This attribute allows you to show or hide single listview columns. Note that the columns
will still be there, they’ll just be invisible. Thus, you must not forget hidden columns
when changing listview entries using Listview.Insert or similar methods.

On non-AmigaOS systems this attribute is only supported for the dataview backend.
When creating a listview and Listviewcolumn.Hide is set to True, RapaGUI will auto-
matically switch to the dataview backend. If you don’t specify this attribute at creation
time but want to set it later using moai.Set(), you have to explicitly request a dataview
widget by setting the Listview.ForceMode attribute.

TYPE
Boolean

APPLICABILITY
ISG

28.6 Listviewcolumn.Icon

NAME
Listviewcolumn.Icon – enable icons for this column

FUNCTION
Set this to True if listview entries in this column use icons. In that case, you have to
pass Hollywood brushes/icons to use as icons to the Listview.Insert method.

Note that RapaGUI might scale the image to fit to the current monitor’s DPI setting.
Please read the chapter on high-DPI support for more information. See Section 3.12
[High-DPI support], page 20, for details.

Please also read about RapaGUI’s image cache to learn more about icon support in
RapaGUI. See Section 3.20 [Image cache], page 30, for details.

On AmigaOS and compatibles icon support is only available with MUI 4.0 or better.

TYPE
Boolean

APPLICABILITY
IG

28.7 Listviewcolumn.IconScale

NAME
Listviewcolumn.IconScale – configure automatic image scaling (V2.0)

FUNCTION
If Listviewcolumn.Icon has been set to a raster brush and RapaGUI is running on a
high-DPI display, RapaGUI will automatically scale the brush’s raster graphics to fit to
the current monitor’s DPI setting. If you don’t want that, set this tag to False.

166 RapaGUI manual

Alternatively, you can also globally disable automatic image scaling by setting the
ScaleGUI tag to False when calling @REQUIRE on RapaGUI. See Section 3.4 [Initial-
izing RapaGUI], page 11, for details.

Please also read the chapter about high-DPI support in RapaGUI to learn more about
supporting high-DPI displays. See Section 3.12 [High-DPI support], page 20, for details.

TYPE
Boolean

APPLICABILITY
I

28.8 Listviewcolumn.IconType

NAME
Listviewcolumn.IconType – set icon type to use (V2.0)

FUNCTION
This attribute allows you to set the type of the Hollywood image object passed in the
Listviewcolumn.Icon attribute. By default, Listviewcolumn.Icon expects a Holly-
wood brush. By setting Listviewcolumn.IconType, however, you can make it use a
different Hollywood image type.

The following image types are currently available:

Brush Use a Hollywood brush. This is the default type. You can use either raster
or vector brushes. Vector brushes have the advantage that they can be
scaled to any resolution without losses in quality. This is very useful when
designing applications that should be compatible with high-DPI monitors.
See Section 3.12 [High-DPI support], page 20, for details.

Icon Use a Hollywood icon. This image type has the advantage that it can contain
several subimages of different sizes. This makes it possible to provide images
in different resolutions which can be very useful when designing applications
that should be compatible with high-DPI monitors. See Section 3.12 [High-
DPI support], page 20, for details.

Note that you can globally change the default of all IconType attributes to Holly-
wood icons by setting the Application.UseIcons tag. See Section 9.13 [Applica-
tion.UseIcons], page 65, for details.

TYPE
String (see above for possible values)

APPLICABILITY
I

Chapter 28: Listviewcolumn class 167

28.9 Listviewcolumn.Sortable

NAME
Listviewcolumn.Sortable – make column sortable

FUNCTION
Set this to True to mark the column as sortable. You can then set this column as the
current sort column by setting the Listview.SortColumn attribute.

TYPE
Boolean

APPLICABILITY
ISG

28.10 Listviewcolumn.SortOrder

NAME
Listviewcolumn.SortOrder – set/get column sort order (V2.0)

FUNCTION
Set or get the desired sort order for the column. This can be one of the following special
values:

Ascending

Ascending order. This is the default.

Descending

Descending order.

The user can also change the sort order by clicking on a listview column’s header. If you
set up a notification on this attribute, you will be notified about such events.

TYPE
String (see above for possible values)

APPLICABILITY
ISGN

28.11 Listviewcolumn.Title

NAME
Listviewcolumn.Title – set/get column title

FUNCTION
Set or get the title for the column. The title is always shown at the top of the listview
and doesn’t go away when the listview is scrolled.

TYPE
String

APPLICABILITY
ISG

168 RapaGUI manual

28.12 Listviewcolumn.Width

NAME
Listviewcolumn.Width – set/get column width

FUNCTION
Set or get the column width in device-independent pixels. This defaults to -1 which
means that the column should be made as large as its largest entry.

TYPE
Number

APPLICABILITY
ISG

169

29 Listviewitem class

29.1 Overview

Listviewitem class can be used when creating listviews to add listview entries already at
object creation time. See Section 27.1 [Listview class], page 139, for details.

Listviewitem class entries must always be embedded inside a <column> declaration. Its
XML tag is <item>. See Section 28.1 [Listviewcolumn class], page 163, for details.

Note that you cannot create instances of this class using moai.CreateObject(). Instead,
you have to use Listview.Insert to create new items at runtime. Also, you cannot change
any attributes of listview items using this class. If you want to change the text or the icon
of a listview entry, you need to use Listview.Rename instead.

29.2 Listviewitem.Icon

NAME
Listviewitem.Icon – set image for listview entry

FUNCTION
Set this attribute to the identifier of a Hollywood brush or icon to add an image
to your listview entry. Whether this attribute expects a Hollywood brush or icon,
depends on what you specify in the Listviewcolumn.IconType attribute. By
default, Listviewitem.Icon expects a Hollywood brush. You also need to set
Listviewcolumn.Icon to True if you want to use icons in a listview column.

To change the icon of a listview entry later, you can use the Listview.Rename method.

Note that RapaGUI might scale the image to fit to the current monitor’s DPI setting.
Please read the chapter on high-DPI support for more information. See Section 3.12
[High-DPI support], page 20, for details.

Please also read about RapaGUI’s image cache to learn more about icon support in
RapaGUI. See Section 3.20 [Image cache], page 30, for details.

On AmigaOS and compatibles icon support is only available with MUI 4.0 or better.

TYPE
Number

APPLICABILITY
I

171

30 Menu class

30.1 Overview

Menu class can be used to create a single pull-down menu which should then be filled with
items derived from Menuitem class class. Menus are usually embedded inside a top-level
<menubar> object. See Section 31.1 [Menubar class], page 175, for details. Alternatively,
they can also be embedded as submenus of other menu objects.

It is also possible to add a menu object as a context menu to one of your window’s widgets
using the Area.ContextMenu attribute. The context menu will then appear whenever the
user presses the right mouse button over the widget that hosts the context menu. Here is
an example of how to add a menu object as a context menu to a text editor widget:

<menu title="Context menu" id="ctxtmenu">

<item>Cut</item>

<item>Copy</item>

<item>Paste</item>

</menu>

<window>

...

<texteditor contextmenu="ctxtmenu"/>

...

</window>

Note that when using Menu class to create context menus, the Menu.Title attribute is only
used on AmigaOS and compatibles. Context menus on Windows, Linux, and macOS don’t
show a title.

30.2 Menu.Append

NAME
Menu.Append – add detached object as last menu child

SYNOPSIS
moai.DoMethod(id, "Append", obj)

FUNCTION
This method can be used to add the detached object specified by obj to the menu object
specified by id. The detached object will be added as the menu’s last child. After this
method returns the specified object will change its state from detached to attached. That
is why you must no longer use functions that expect a detached object with this object
now.

Detached MOAI objects can be created either by calling the moai.CreateObject()

function or by explicitly detaching them from their parent by using the Menu.Remove

method.

INPUTS

id id of the menu object

172 RapaGUI manual

obj id of the object to attach

30.3 Menu.Disabled

NAME
Menu.Disabled – set/get disabled state of menu

FUNCTION
Enable or disable the complete menu.

TYPE
Boolean

APPLICABILITY
ISG

30.4 Menu.Insert

NAME
Menu.Insert – insert detached object after specified child

SYNOPSIS
moai.DoMethod(id, "Insert", obj, pred)

FUNCTION
This method can be used to insert the detached object specified by obj to the menu
object specified by id. The detached object will be added after the child specified by
pred. After this method returns the specified object will change its state from detached
to attached. That is why you must no longer use functions that expect a detached object
with this object now.

Detached MOAI objects can be created either by calling the moai.CreateObject()

function or by explicitly detaching them from their parent by using the Menu.Remove

method.

INPUTS

id id of the menu object

obj id of the object to insert

pred the object will be inserted after this object

30.5 Menu.NoAutoKey

NAME
Menu.NoAutoKey – disable automatic shortcut generation

FUNCTION
Set this attribute to disable automatic shortcut generation. By default, the character fol-
lowing an underscore character in a menu title will be treated as an accelerator key that

Chapter 30: Menu class 173

can be used to access the menu entry using the keyboard. If you set this attribute, un-
derscore characters will never be treated as shortcut markers and will be shown normally
in menu entries.

See Section 3.13 [Keyboard shortcuts], page 21, for details.

TYPE
Boolean

APPLICABILITY
I

30.6 Menu.Prepend

NAME
Menu.Prepend – add detached object as first menu child

SYNOPSIS
moai.DoMethod(id, "Prepend", obj)

FUNCTION
This method can be used to add the detached object specified by obj to the menu object
specified by id. The detached object will be added as the menu’s first child. After
this method returns the specified object will change its state from detached to attached.
That is why you must no longer use functions that expect a detached object with this
object now.

Detached MOAI objects can be created either by calling the moai.CreateObject()

function or by explicitly detaching them from their parent by using the Menu.Remove

method.

INPUTS

id id of the menu object

obj id of the object to attach

30.7 Menu.Remove

NAME
Menu.Remove – detach object from menu

SYNOPSIS
moai.DoMethod(id, "Remove", obj)

FUNCTION
This method can be used to detach the specified object from the specified menu. Af-
ter this method returns the specified object will change its state from attached to de-
tached. This means that you could now attach it to another menu using a function like
Menu.Insert or you could free it using moai.FreeObject().

INPUTS

id id of the menu object

174 RapaGUI manual

obj id of the object to remove

30.8 Menu.Title

NAME
Menu.Title – set/get menu title

FUNCTION
Set or get the title of the menu.

If the title contains an underscore, RapaGUI will automatically set up the character
following this underscore as a keyboard shortcut. If you don’t want this behaviour, set
Menu.NoAutoKey to True.

TYPE
String

APPLICABILITY
ISG

30.9 Menu.Type

NAME
Menu.Type – set menu type (V2.0)

FUNCTION
This attribute can be used to set the type for this menu. The following types are currently
possible:

Help Designate item as the help menu. Only supported on macOS.

Note that when setting this attribute to one of the types only supported on macOS,
RapaGUI will move the menu to its appropriate position according to macOS’ styleguide,
e.g. the "Help" menu always appears at the far right of the menubar. On non-macOS
systems, those special types don’t have any effect and RapaGUI will just ignore them.

TYPE
String (see above for possible values)

APPLICABILITY
I

175

31 Menubar class

31.1 Overview

Menubar class is used to manage top-level menus that can be attached to windows via the
Window.Menubar attribute. A menubar contains a number of children which are objects of
Menu class, each of them describing exactly one menu.

In an XML file a menu tree is defined using the <menubar>, <menu> and <item> tags. Here
is an example definition of a simple menubar:

<menubar id="mymenubar">

<menu title="_File">

<item>_New...</item>

<item>_Open...</item>

<item/>

<item>_Save</item>

<item>S_ave as...</item>

<item/>

<item>_Quit</item>

</menu>

<menu title="Edit">

<item shortcut="Ctrl+X">_Cut</item>

<item shortcut="Ctrl+C">C_opy</item>

<item shortcut="Ctrl+V">_Paste</item>

</menu>

<menu title="?">

<item>Se_ttings...</item>

<item/>

<item>A_bout...</item>

<item>About _RapaGUI...</item>

</menu>

</menubar>

Note the use of the underscore character in the XML code above: You can use this character
to automatically designate the next character as a shortcut key for the menu item. This is
very useful because many people like to use the keyboard instead of the mouse, especially
when it comes to repeating the same actions many times. Thus, it is always a good idea to
set up keyboard shortcuts. See Section 3.13 [Keyboard shortcuts], page 21, for details.

If you need more complex keyboard shortcuts, e.g. something like Ctrl+V for paste,
you can use the attribute Menuitem.Shortcut to set up such a shortcut. Note that on
some platforms (e.g. Windows), both types of shortcuts can be specified at the same
time: Shortcuts specified by using the underscore character and shortcuts declared via the
Menuitem.Shortcut. If a certain platform supports only one type of shortcut, the one spec-
ified in Menuitem.Shortcut will take precedence over the one specified using the underscore
character.

Also note the empty <item/> declarations: These will insert a separator bar into the menu
tree. Using separator bars makes your menu more readable to the end-user. After you have

176 RapaGUI manual

written the XML declaration above you can add the menubar to one of your windows by
using the Window.Menubar attribute as follows:

<window menubar="mymenubar">

...

</window>

It is very important to note that you have to declare your menubars in the <application>
scope because menubars are global objects and are only attached to windows or widgets
later on. That is why it is not allowed to declare menubars inside a <window> XML scope.

31.2 Menubar.Append

NAME
Menubar.Append – add detached object as last menubar child

SYNOPSIS
moai.DoMethod(id, "Append", obj)

FUNCTION
This method can be used to add the detached object specified by obj to the menubar
object specified by id. The detached object will be added as the menubar’s last child.
After this method returns the specified object will change its state from detached to
attached. That is why you must no longer use functions that expect a detached object
with this object now.

Detached MOAI objects can be created either by calling the moai.CreateObject()

function or by explicitly detaching them from their parent by using the Menubar.Remove
method.

INPUTS

id id of the menubar object

obj id of the object to attach

31.3 Menubar.Insert

NAME
Menubar.Insert – insert detached object after specified child

SYNOPSIS
moai.DoMethod(id, "Insert", obj, pred)

FUNCTION
This method can be used to insert the detached object specified by obj to the menubar
object specified by id. The detached object will be added after the child specified by
pred. After this method returns the specified object will change its state from detached
to attached. That is why you must no longer use functions that expect a detached object
with this object now.

Detached MOAI objects can be created either by calling the moai.CreateObject()

function or by explicitly detaching them from their parent by using the Menubar.Remove
method.

Chapter 31: Menubar class 177

INPUTS

id id of the menubar object

obj id of the object to insert

pred the object will be inserted after this object

31.4 Menubar.Prepend

NAME
Menubar.Prepend – add detached object as first menubar child

SYNOPSIS
moai.DoMethod(id, "Prepend", obj)

FUNCTION
This method can be used to add the detached object specified by obj to the menubar
object specified by id. The detached object will be added as the menubar’s first child.
After this method returns the specified object will change its state from detached to
attached. That is why you must no longer use functions that expect a detached object
with this object now.

Detached MOAI objects can be created either by calling the moai.CreateObject()

function or by explicitly detaching them from their parent by using the Menubar.Remove
method.

INPUTS

id id of the menubar object

obj id of the object to attach

31.5 Menubar.Remove

NAME
Menubar.Remove – detach object from menubar

SYNOPSIS
moai.DoMethod(id, "Remove", obj)

FUNCTION
This method can be used to detach the specified object from the specified menubar.
After this method returns the specified object will change its state from attached to
detached. This means that you could now attach it to another menubar using a function
like Menubar.Insert or you could free it using moai.FreeObject().

INPUTS

id id of the menubar object

obj id of the object to remove

179

32 Menuitem class

32.1 Overview

Menuitem class can be used to create a single menu item. As such menuitems must always
be embedded inside a <menu> tag which in turn is usually embedded inside a <menubar>

tag. See Section 31.1 [Menubar class], page 175, for details.

Please note that the XML tag for menuitem class is just <item> and not <menuitem> when
creating menu items that are embedded inside a <menu> tree. When creating isolated menu
items that aren’t embedded inside a <menu> tree, you have to use <menuitem>, though
because otherwise RapaGUI wouldn’t be able to know which class you are referring to since
<item> is used by many different classes.

If you do not specify a title for the menuitem, a separator item will be created. This is
useful to group certain menuitems together which results in a more readable menu layout.

See Section 31.1 [Menubar class], page 175, for an example.

32.2 Menuitem.Disabled

NAME
Menuitem.Disabled – set/get disabled state of menu item

FUNCTION
Set or get the menu item’s disabled state.

TYPE
Boolean

APPLICABILITY
ISG

32.3 Menuitem.Help

NAME
Menuitem.Help – set/get menu item help text

PLATFORMS
Windows, Linux, macOS

FUNCTION
Set or get the menu item’s help text. This text is automatically shown in the status
bar of the window that hosts the menu whenever the mouse hovers over the menu item.
This is quite convenient for the user because it explains the function of the individual
menu items in a somewhat greater detail. See Section 46.1 [Statusbar class], page 227,
for details.

TYPE
String

180 RapaGUI manual

APPLICABILITY
ISG

32.4 Menuitem.NoAutoKey

NAME
Menuitem.NoAutoKey – disable automatic shortcut generation

FUNCTION
Set this attribute to disable automatic shortcut generation. By default, the character
following an underscore character in a menu item title will be treated as an accelerator
key that can be used to access the menu item using the keyboard. If you set this
attribute, underscore characters will never be treated as shortcut markers and will be
shown normally in menu items.

See Section 3.13 [Keyboard shortcuts], page 21, for details.

TYPE
Boolean

APPLICABILITY
I

32.5 Menuitem.Selected

NAME
Menuitem.Selected – learn if an item is selected

FUNCTION
This attribute is triggered when the user selects a menu item. RapaGUI automatically
listens to this attribute for all menu items so you do not need to explicitly request a
notification using the MOAI.Notify attribute.

For menu items that can be toggled or are part of a radio group, querying this attribute
returns the current toggle or radio state of the menu item.

TYPE
Boolean

APPLICABILITY
ISGN

32.6 Menuitem.Shortcut

NAME
Menuitem.Shortcut – set custom shortcut for menu item

FUNCTION
Set a custom shortcut for a menu item. Normally, menu item shortcuts are defined by
just using the underscore character in the item title to designate a keyboard shortcut.

Chapter 32: Menuitem class 181

See Section 3.13 [Keyboard shortcuts], page 21, for details. There are however certain
cases where this is not sufficient. First of all, by using the underscore character to declare
a keyboard shortcut you are limited to characters which are part of the menu item’s title.
In many times, though, you will want to declare a shortcut that is not part of the item’s
title, e.g. the typical shortcut for "Paste" is Ctrl+V although there is no "V" in the word
"Paste". This is where Menuitem.Shortcut can be used to set up arbitrary shortcuts
for your menu items.

Additionally, this attribute is also useful for defining more complex shortcuts, e.g. Alt+F5
or Ctrl+Shift+X, etc. Defining such complex shortcuts isn’t possible through the stan-
dard underscore route either, so you have to use Menuitem.Shortcut for it.

The string you specify here must be combination of modifiers and keys separated by +

or - characters. The following modifiers and keys are currently recognized:

Ctrl This specifies the control key on Windows and Linux and the command key
on AmigaOS and macOS. The reason why this is mapped to the command
key on AmigaOS and macOS is to make it easier for you to write portable
code. On Windows and Linux the control key is the standard modifier key
whereas AmigaOS and macOS use the command key as the standard modifier
key. Thus, by specifying this modifier you will always get the system’s default
modifier key. If you need to use the real control key on AmigaOS and macOS,
use the modifier key RawCtrl (see below). If RapaGUI didn’t treat Ctrl as
a special token, you’d always have to write separate code for Windows and
Linux vs. AmigaOS and macOS, i.e. you’d have to specify Ctrl+V for paste
on Windows and Linux and Cmd+V for paste on AmigaOS and macOS. Since
this generates unnecessary overhead, Ctrl is treated as a special key which
is mapped to the system’s default menu shortcut modifier key.

Alt Use the alt key as a modifier key.

Shift Use the shift key as a modifier key.

RawCtrl On AmigaOS and macOS this modifier key allows you to listen to the real
control key. If you use Ctrl instead, RapaGUI will listen to the command
key on AmigaOS and macOS (see above for details). On Windows and Linux
RawCtrl is identical to Ctrl.

Up Cursor up

Down Cursor down

Right Cursor right

Left Cursor left

Help Help key

Del Delete key

Backspace

Backspace key

Tab Tab key

Return Return key

182 RapaGUI manual

Enter Enter key

Esc Escape

Space Space key

F1 - F16 Function keys

Insert Insert key

Home Home key

End End key

PageUp Page up key

PageDown Page down key

Print Print key

Pause Pause key

Furthermore, you can also add English alphabet characters from A to Z as well as the
numbers 0 to 9 to your shortcut specification.

Finally, please do note that specifying shortcuts using the underscore character and
Menuitem.Shortcut are not mutually exclusive. You can actually specify both and
on some systems (e.g. Windows) RapaGUI will even support both. For example, on
Windows you can access menu items via the keyboard by first pressing Alt and then the
underscore shortcut or you can also access menu items by pressing a predefined shortcut,
e.g. Ctrl+V for paste. On systems which don’t support both kinds of shortcuts, the
shortcut specified in Menuitem.Shortcut will take precedence.

TYPE
String

APPLICABILITY
I

32.7 Menuitem.Title

NAME
Menuitem.Title – set/get menu item title

FUNCTION
Set or get the menu item title.

If the title contains an underscore, RapaGUI will automatically set up the character
following this underscore as a keyboard shortcut. If you don’t want this behaviour, set
Menuitem.NoAutoKey to True.

TYPE
String

APPLICABILITY
ISG

Chapter 32: Menuitem class 183

32.8 Menuitem.Type

NAME
Menuitem.Type – set/get menu item type

FUNCTION
This attribute can be used to set the type for this menu item. The following types are
currently possible:

Normal Normal menu item.

Toggle Toggle menu item with a checkmark.

Radio Radio menu item that forms a group with its neighbouring radio menu items.
Only one member of the group can be selected at a time.

About Designate item as the about menu item. Only supported on macOS. (V2.0)

Help Designate item as the help menu item. Only supported on macOS. (V2.0)

Preferences

Designate item as the preferences menu item. Only supported on macOS.
(V2.0)

Quit Designate item as the quit menu item. Only supported on macOS. (V2.0)

Note that when setting this attribute to one of the types only supported on macOS,
RapaGUI will move the item to its appropriate position according to macOS’ styleguide,
e.g. the "About", "Preferences", and "Quit" menus are part of the program menu on
macOS. On non-macOS systems, those special types don’t have any effect and RapaGUI
will just ignore them.

TYPE
String (see above for possible values)

APPLICABILITY
IG

185

33 MOAI class

33.1 Overview

MOAI class is the superclass of all other MOAI classes. It manages the internal notification
mechanism on the one hand but on the other hand it also provides some general attributes
which can be used with all object types, e.g. you can store user data inside your objects
using MOAI.UserData.

33.2 MOAI.Class

NAME
MOAI.Class – get class name of object

FUNCTION
Get the RapaGUI class name of an object.

TYPE
String

APPLICABILITY
G

33.3 MOAI.I18N

NAME
MOAI.I18N – set catalog string index (V2.0)

FUNCTION
This attribute can be used to set the catalog string index for the object. This is only
supported by widgets which allow you to pass a text string as part of its XML declaration,
e.g. widgets of type Button class. You have to pass the index of the catalog string for
the widget in this tag, either as a numeric value or as a Hollywood constant.

See Section 3.17 [Internationalization], page 24, for details.

TYPE
Number or Hollywood constant

APPLICABILITY
I

33.4 MOAI.ID

NAME
MOAI.ID – set object ID

FUNCTION
This attribute can be used to set the ID for a MOAI object. You need to give your
objects unique IDs so that you can access them using the moai.Set(), moai.Get() and
moai.DoMethod() functions.

186 RapaGUI manual

TYPE
String

APPLICABILITY
I

33.5 MOAI.NoNotify

NAME
MOAI.NoNotify – disable notifications

FUNCTION
When setting up notifications on class attributes, events will also be triggered in case an
attribute’s value is modified manually by calling moai.Set(). Setting MOAI.NoNotify

in the same call will prevent the notification from being triggered.

Note that MOAI.NoNotify is a "one time" attribute. It’s only effective during the current
moai.Set() call!

TYPE
Boolean

APPLICABILITY
S

EXAMPLE
moai.Set("lv", "active", 5, "nonotify", true)

The code above activates listview entry number 6 but doesn’t trigger any notification.

33.6 MOAI.Notify

NAME
MOAI.Notify – set up notifications

FUNCTION
Use this attribute to specify which attributes you would like to listen to. Whenever
the value of the attribute changes, RapaGUI will run your event handler. Multiple at-
tributes have to be separated by semicolons. For example, to listen to the attribute
Listview.Active and Listview.DoubleClick, you would have to pass the string "ac-
tive; doubleclick" here.

To set up or remove notifications outside XML declarations, use the function
moai.Notify(). See Section 6.11 [moai.Notify], page 53, for details.

TYPE
String

APPLICABILITY
I

Chapter 33: MOAI class 187

33.7 MOAI.NotifyData

NAME
MOAI.NotifyData – set/get event specific user data

FUNCTION
This attribute allows you to define notification specific user data in an object. You have
to pass a string here that contains one or more notifications and user data for each
notification in the string. When a notification that is specified in the string is triggered,
the event handler callback will receive the user data specified in MOAI.NotifyData in
the NotifyData field of the event message.

The string that you need to pass to this attribute must be formatted as follows: Name
of the notification attribute, followed by a colon, followed by a user data string, followed
by a semi-colon. The sequence may then be repeated as many times as it is requred.

For example: "Active: foo; DoubleClick: bar;". When the "Active" notification is
triggered, "foo" will be send to the event handler callback. When the "DoubleClick"
attribute triggers, "bar" will be sent.

See Section 3.7 [Notifications], page 13, for details.

TYPE
Any

APPLICABILITY
ISG

33.8 MOAI.UserData

NAME
MOAI.UserData – set/get user data of object

FUNCTION
Store any kind of value in an object using this attribute. You can get this value later
directly from the object. This is a good mechanism to avoid having to use global vari-
ables.

The user data you specify here will also be passed to your event handler callback that you
have installed using InstallEventHandler(). The event handler callback will receive
the user data specified in MOAI.UserData in the MOAIUserData field of the event message.
See Section 3.7 [Notifications], page 13, for details.

TYPE
Any

APPLICABILITY
ISG

189

34 Pageview class

34.1 Overview

Pageview class derives from Area class and is a container for multiple pages of widgets,
displayed as one page at a time. When using this class, you only have to supply a number
of groups constituting the pageview’s children. These children can then be visualized in a
number of ways, depending on the Pageview.Mode attribute which determines the widget
that is used to browse through the pages. The following widgets are currently available for
that purpose:

− tabbed widget (default)

− list widget

− choice widget

− none, i.e. pages can only be changed programmatically (useful for setup wizards etc.)

When setting up a pageview, you need to use the Group.Title attribute to define title
texts for your pageview children. You can also use the Group.Icon attribute to add icons
for your pageview children.

Here is an example of a three page pageview group:

<pageview>

<vgroup title="Page 1">

<listview>

<column>

<item>Entry</item>

</column>

</listview>

</vgroup>

<vgroup title="Page 2">

<texteditor/>

</vgroup>

<vgroup title="Page 3">

<button id="btn">Click me</button>

</vgroup>

</pageview>

34.2 Pageview.Active

NAME
Pageview.Active – set/get active page

FUNCTION
Set or get the active page. The pageview widget will only display this page, all other
pages will be hidden. Page indices range from 0 for the first page to Pageview.Pages-1
for the last child.

You can also pass one of the following special values here:

First First page.

190 RapaGUI manual

Last Last page.

Prev Previous page.

Next Next page.

You can also set up a notification on this attribute to learn when the user changes pages.

TYPE
Number or string (see above for possible values)

APPLICABILITY
ISGN

34.3 Pageview.Append

NAME
Pageview.Append – add new page to pageview

SYNOPSIS
moai.DoMethod(id, "Append", obj[, active])

FUNCTION
This method can be used to add a new page to a pageview. The new page specified by
obj must be a detached group object. This detached group object will then be added
as the pageview’s last page. After this method returns the specified group object will
change its state from detached to attached. That is why you must no longer use functions
that expect a detached object with this object now.

Detached MOAI objects can be created either by calling the moai.CreateObject()

function or by explicitly detaching them from their parent by using the Pageview.Remove
method.

On AmigaOS and compatibles this feature requires at least MUI 4.0.

INPUTS

id id of the pageview object

obj id of the group object to add as a new page

active optional: set this to True to activate the page after adding it

34.4 Pageview.GetPageID

NAME
Pageview.GetPageID – return ID of a page inside the pageview

SYNOPSIS
id$ = moai.DoMethod(id, "GetPageID", idx)

FUNCTION
This method returns the ID of the page at the specified index within the pageview. idx
can be an absolute number ranging from 0 to the number of pages in the pageview minus
1 or it can be one of the following special values:

First First page.

Chapter 34: Pageview class 191

Last Last page.

Active Active page.

On AmigaOS and compatibles this feature requires at least MUI 4.0.

INPUTS

id id of the pageview object

idx absolute index of desired page or special string constant (see above)

RESULTS

id$ id of the page object at the specified pageview index

34.5 Pageview.Insert

NAME
Pageview.Insert – insert new page into pageview

SYNOPSIS
moai.DoMethod(id, "Insert", obj, pos[, active])

FUNCTION
This method can be used to insert a new page into a pageview at the position specified
by pos. Insert positions are counted from 0 which marks the position of the first page.
The new page specified by obj must be a detached group object. After this method
returns the specified group object will change its state from detached to attached. That
is why you must no longer use functions that expect a detached object with this object
now.

Detached MOAI objects can be created either by calling the moai.CreateObject()

function or by explicitly detaching them from their parent by using the Pageview.Remove
method.

On AmigaOS and compatibles this feature requires at least MUI 4.0.

INPUTS

id id of the pageview object

obj id of the group object to insert as a new page

pos desired insert position for the new page (starting from 0)

active optional: set this to True to activate the page after adding it

34.6 Pageview.Mode

NAME
Pageview.Mode – set browser widget to use

FUNCTION
Set the browser widget this pageview object should use. This can be one of the following
values:

Tabs Use a tabbed control to browse through the pages. This is the default mode.

192 RapaGUI manual

List Use a listview widget to browse through the pages.

Choice Use a choice widget to browse through the pages.

None Don’t use any browser widget at all. This means that the user cannot
browse through the pages. Pages can only be changed by setting the
Pageview.Active attribute. This is useful for setup or installation wizards
which often use a custom pageview which only switches page when the user
presses a "Next page" or "Previous page" button.

TYPE
String (see above for possible values)

APPLICABILITY
I

34.7 Pageview.Multiline

NAME
Pageview.Multiline – enable multi line tabs

PLATFORMS
Windows only

FUNCTION
Set this to True to make the browser widget show its tabs on multiple lines instead of
adding scroll buttons when the number of tabs exceeds the available space. Obviously,
this attribute only makes sense when using Tabs mode with Pageview.Mode.

TYPE
Boolean

APPLICABILITY
I

34.8 Pageview.Pages

NAME
Pageview.Pages – find out number of pages in pageview

FUNCTION
You can query this attribute to find out the current number of pages in the pageview
object.

On AmigaOS and compatibles this feature requires at least MUI 4.0.

TYPE
Number

APPLICABILITY
G

Chapter 34: Pageview class 193

34.9 Pageview.PlainBG

NAME
Pageview.PlainBG – force normal group background

PLATFORMS
AmigaOS and compatibles only

FUNCTION
By default the individual pageview children groups are drawn with a special background
color to indicate that they are pageview children. Set this attribute to True if you don’t
want this special background.

TYPE
Boolean

APPLICABILITY
I

34.10 Pageview.Position

NAME
Pageview.Position – set position of browser widget

FUNCTION
This attribute allows you to configure where the pageview’s browser widget (register,
list, or choice widget) should appear.

The following values are recognized by this attribute:

Left Put browser widget to the left of the pages.

Right Put browser widget to the right of the pages.

Bottom Put browser widget to the bottom of the pages.

Top Put browser widget to the top of the pages.

On AmigaOS and compatibles this feature requires at least MUI 4.0.

TYPE
String (see above for possible values)

APPLICABILITY
I

34.11 Pageview.Prepend

NAME
Pageview.Prepend – prepend new page to pageview

SYNOPSIS
moai.DoMethod(id, "Prepend", obj[, active])

194 RapaGUI manual

FUNCTION
This method can be used to prepend a new page to a pageview. The new page specified
by obj must be a detached group object. This detached group object will then be added
as the pageview’s first page. After this method returns the specified group object will
change its state from detached to attached. That is why you must no longer use functions
that expect a detached object with this object now.

Detached MOAI objects can be created either by calling the moai.CreateObject()

function or by explicitly detaching them from their parent by using the Pageview.Remove
method.

On AmigaOS and compatibles this feature requires at least MUI 4.0.

INPUTS

id id of the pageview object

obj id of the group object to add as the first page

active optional: set this to True to activate the page after adding it

34.12 Pageview.Remove

NAME
Pageview.Remove – remove page from pageview

SYNOPSIS
moai.DoMethod(id, "Remove", obj)

FUNCTION
This method will remove the page specified by obj from the pageview. The group object
that constitutes the page that is being removed will then change its state from attached
to detached. This means that you could attach it now to another pageview or group
using a function like Group.Insert and Pageview.Append, respectively, or you could
free it using moai.FreeObject().

On AmigaOS and compatibles this feature requires at least MUI 4.0.

INPUTS

id id of the pageview object

obj id of the page to remove

195

35 Popcolor class

35.1 Overview

Popcolor class derives from Area class and creates a widget which allows the user to pick
a color. Popcolor widgets usually contain a button which, when clicked, pops up a dialog
prompting the user to choose a color. This is all managed automatically by the widget and
you don’t have to do anything except putting the widget somewhere in your window layout.

You can set the title of the popup dialog using the Popcolor.Title attribute on the
Popcolor object. To get or set the current color of a Popcolor object, you can use the
Popcolor.RGB attribute.

35.2 Popcolor.RGB

NAME
Popcolor.RGB – set/get color

FUNCTION
Set or get the popcolor color. If you set up a notification on this attribute, you will be
notified whenever the color changes. From the Hollywood script the color is specified
as a simple numerical value containing 8 bits for each component. When you specify
the color in the XML file, it has to be passed as a 6 character string prefixed by the
#-character (just like in HTML).

TYPE
Number

APPLICABILITY
ISGN

35.3 Popcolor.Title

NAME
Popcolor.Title – set popup window title

FUNCTION
Set the title for the popup dialog.

TYPE
String

APPLICABILITY
I

197

36 Popfile class

36.1 Overview

Popfile class derives from Area class and creates a widget which allows the user to select
a file. Popfile widgets usually contain a button which, when clicked, pops up a dialog
prompting the user to choose a file. This is all managed automatically by the widget and
you don’t have to do anything except putting the widget somewhere in your window layout.

You can set the title of the popup dialog using the Popfile.Title attribute on the Popfile
object and you can get the user’s selection by getting the Popfile.File attribute.

36.2 Popfile.File

NAME
Popfile.File – set/get current popfile path

FUNCTION
Get and set the current path of this popfile object.

You can also set up a notification on this attribute to be notified whenever the user
selects a new file for this popfile object.

TYPE
String

APPLICABILITY
ISGN

36.3 Popfile.Pattern

NAME
Popfile.Pattern – set filter pattern for file requester

FUNCTION
Set the filter pattern for the file requester. Only files which match this filter pattern will
be selectable in the requester. The filter pattern is a string that contains a number of
file extensions that will be accepted by the requester. These endings must be separated
by ’|’ characters. For example: "voc|wav|8svx|16sv|iff|aiff" will only show files which
have one of these extensions.

If you don’t set this attribute, all files will be selectable.

TYPE
String

APPLICABILITY
I

198 RapaGUI manual

36.4 Popfile.SaveMode

NAME
Popfile.SaveMode – enable save mode

FUNCTION
Set this tag to True to put the file requester in save mode.

TYPE
Boolean

APPLICABILITY
I

36.5 Popfile.Title

NAME
Popfile.Title – set requester title

FUNCTION
Set the title string for the file requester window.

TYPE
String

APPLICABILITY
I

199

37 Popfont class

37.1 Overview

Popfont class derives from Area class and creates a widget which allows the user to select
a font. Popfont widgets usually contain a button which, when clicked, pops up a dialog
prompting the user to choose a font. This is all managed automatically by the widget and
you don’t have to do anything except putting the widget somewhere in your window layout.

You can set the title of the popup dialog using the Popfont.Title attribute on the Popfont
object and you can get the user’s selection by getting the Popfont.Font attribute.

37.2 Popfont.Font

NAME
Popfont.Font – set/get current font selection

FUNCTION
Get and set the user’s current font selection. Popfont class uses a slash to separate font
name and size, e.g. Arial/48.

You can also set up a notification on this attribute to be notified whenever the user
selects a new font for this popfont object.

TYPE
String

APPLICABILITY
ISGN

37.3 Popfont.MaxSize

NAME
Popfont.MaxSize – set maximum font height

FUNCTION
Only display fonts which are equal to or smaller than this size.

TYPE
Number

APPLICABILITY
I

37.4 Popfont.MinSize

NAME
Popfont.MinSize – set minimum font height

200 RapaGUI manual

FUNCTION
Only display fonts which are equal to or larger than this size.

TYPE
Number

APPLICABILITY
I

37.5 Popfont.Title

NAME
Popfont.Title – set requester title

FUNCTION
Set the title string for the font requester window.

TYPE
String

APPLICABILITY
I

201

38 Poppath class

38.1 Overview

Poppath class derives from Area class and creates a widget which allows the user to select
a path. Poppath widgets usually contain a button which, when clicked, pops up a dialog
prompting the user to choose a path. This is all managed automatically by the widget and
you don’t have to do anything except putting the widget somewhere in your window layout.

You can set the title of the popup dialog using the Poppath.Title attribute on the Poppath
object and you can get the user’s selection by getting the Poppath.Path attribute.

38.2 Poppath.Path

NAME
Poppath.Path – set/get current poppath path

FUNCTION
Get and set the current path of this poppath object.

You can also set up a notification on this attribute to be notified whenever the user
selects a new path for this poppath object.

TYPE
String

APPLICABILITY
ISGN

38.3 Poppath.Title

NAME
Poppath.Title – set requester title

FUNCTION
Set the title string for the requester window.

TYPE
String

APPLICABILITY
I

203

39 Progressbar class

39.1 Overview

Progressbar class derives from Area class and creates a widget which visualizes tasks or
processes that take some time to complete. Usually, the rest of the application is blocked
while a progress bar is being shown.

Here is an example XML declaration of a progress bar in RapaGUI:

<progressbar/>

39.2 Progressbar.Horiz

NAME
Progressbar.Horiz – set progress bar orientation

FUNCTION
Set this to False if you want a vertical progress bar. By default, a horizontal progress
bar will be created.

TYPE
Boolean

APPLICABILITY
I

39.3 Progressbar.Level

NAME
Progressbar.Level – set/get current level

FUNCTION
Set the current position of the progress bar. The new position must be between 0 and
Progressbar.Max. You can also set up a notification on this attribute. This can be
useful if you’d like to update some other widget whenever the current level changes.

TYPE
Number

APPLICABILITY
ISGN

39.4 Progressbar.Max

NAME
Progressbar.Max – set maximum level of progress bar

FUNCTION
Set the maximum level for the progressbar. This defaults to 100.

204 RapaGUI manual

TYPE
Number

APPLICABILITY
ISG

205

40 Radio class

40.1 Overview

Radio class derives from Area class and creates a number of mutually exclusive buttons
allowing the user to make a single choice. The buttons are embedded inside a group with
a frame and an optional frame title.

When you declare a radio widget in XML, you have to use the <item> tag to fill the radio
widget with items. Every radio widget needs to have at least one item.

Here is an example XML excerpt for creating a radio widget:

<radio id="printer">

<item>HP Deskjet</item>

<item>NEC P6</item>

<item>Okimate 20</item>

</radio>

You can use the Radio.Columns attribute to fine-tune the layout of the radio buttons. By
default, they appear in a single-column vertical layout. Setting Radio.Columns allows you
to change that to a horizontal layout, for example.

40.2 Radio.Active

NAME
Radio.Active – set/get active radio item

FUNCTION
Set or get the active item in the radio widget ranging from index 0 for the first item to
number of entries - 1 for the last item.

You can also set up a notification on this attribute to learn whenever the user selects a
new radio item.

TYPE
Number

APPLICABILITY
ISGN

40.3 Radio.Columns

NAME
Radio.Columns – set number of radio columns (V2.0)

FUNCTION
Set the number of columns the radio widget should use. This defaults to 1 which means
that all radio buttons will appear in one column.

Note that on Android, you cannot have complex radio layouts that use columns and
rows. You can either have all radio buttons appear in one row (horizontal layout) or in
one column (vertical layout).

206 RapaGUI manual

TYPE
Number

APPLICABILITY
I

40.4 Radio.GetItem

NAME
Radio.GetItem – get radio button label (V2.0)

SYNOPSIS
e$ = moai.DoMethod(id, "GetItem", pos)

FUNCTION
Get the label of a radio button. You can pass either an absolute index in pos or the
special value Active to get the label of the active button. Radio.GetItem will then
return the label as a string.

INPUTS

id id of the radio object

pos button index or "Active"

RESULTS

e$ label of radio button at specified index

40.5 Radio.SetItem

NAME
Radio.SetItem – set radio button label (V2.0)

SYNOPSIS
moai.DoMethod(id, "SetItem", pos, newname$)

FUNCTION
Set the radio button label to the name specified in newname$. The index of the radio
button to use is specified in the pos argument. This can be an absolute index position
starting at 0 for the first button or one of the following special values:

Active Change the label of the active button.

INPUTS

id id of the radio object

pos button position as absolute number or special value (see above)

newname$ new label text

Chapter 40: Radio class 207

40.6 Radio.Title

NAME
Radio.Title – set title for radio box frame

FUNCTION
The text you specify here is shown as a title text in the frame that is drawn around the
radio box.

Note that changing the frame title requires MUI 4.0 or better on AmigaOS and compat-
ibles.

TYPE
String

APPLICABILITY
ISG

209

41 Rectangle class

41.1 Overview

Rectangle class derives from Area class and creates empty objects that are freely resizable.
This might not seem very useful at first but in fact, rectangle objects are needed very
often to fine-tune the GUI layout. They can be used for all kinds of layout magic, e.g. for
controlling the alignment of fixed-size widgets and much more.

Additionally, rectangle objects are often necessary as padding space next to objects which
are not resizable themselves. The <radio> object, for instance, is not resizable. To prevent
these static radio objects from blocking the resizing feature of your whole GUI, you can
simply pad them with <rectangle> objects. Here is an example of a radio object, padded
using an invisible rectangle:

<hgroup>

<rectangle/>

<radio id="printer">

<item>HP Deskjet</item>

<item>NEC P6</item>

<item>Okimate 20</item>

</radio>

<rectangle/>

</hgroup>

By using rectangles on both sides of the radio box object, the radio box will automatically
be centered inside the available GUI space. If you used only one rectangle object before
the radio object, the radio object would automatically be right aligned. A rectangle object
after the radio object would lead to left alignment of the radio object.

If you need fixed size padding objects, use HSpace class or VSpace class. See Section 21.1
[HSpace class], page 123, for details. See Section 60.1 [VSpace class], page 295, for details.

Rectangle class doesn’t define any attributes.

211

42 Scrollbar class

42.1 Overview

Scrollbar class derives from Area class and creates a widget that represents a horizontal
or vertical scrollbar. An isolated scrollbar object doesn’t make much sense. That’s why
scrollbar objects are typically connected to another widget by using the Scrollbar.Target
attribute. For example, you can connect scrollbars to an object of Hollywood class to create
a custom widget which draws user-defined graphics depending on the current scrollbar
position.

42.2 Scrollbar.AutoScale

NAME
Scrollbar.AutoScale – enable/disable autoscaling (V2.0)

FUNCTION
By default, all size and position values in scrollbar class will use device-independent
pixels. If you don’t want that, set this attribute to False. In that case, all values will
use physical pixels instead. See Section 3.12 [High-DPI support], page 20, for details.

This attribute defaults to what has been set in the ScaleGUI tag when calling @REQUIRE

on the RapaGUI plugin. Note that when not set, ScaleGUI defaults to True. See
Section 3.4 [Initializing RapaGUI], page 11, for details.

TYPE
Boolean

APPLICABILITY
I

42.3 Scrollbar.Horiz

NAME
Scrollbar.Horiz – set scrollbar object direction

FUNCTION
Determine whether you want a horizontal or a vertical scrollbar. By default, a vertical
scrollbar is created.

TYPE
Boolean

APPLICABILITY
IG

212 RapaGUI manual

42.4 Scrollbar.Level

NAME
Scrollbar.Level – set/get current scrollbar position

FUNCTION
Set or get the current scrollbar position. You usually will want to set up a notification
on this attribute to be notified whenever the scrollbar position changes. This allows you
to dynamically react to these changes and update another widget which your scrollbar
is determined to control.

Note that unless Scrollbar.AutoScale is to False, this value will be in device-
independent pixels. If you want to have physical pixels instead, you must set
Scrollbar.AutoScale to False.

TYPE
Number

APPLICABILITY
ISGN

42.5 Scrollbar.Range

NAME
Scrollbar.Range – set/get scrollbar range

FUNCTION
Set or get the scrollbar range.

Note that unless Scrollbar.AutoScale is to False, this value will be in device-
independent pixels. If you want to have physical pixels instead, you must set
Scrollbar.AutoScale to False.

TYPE
Number

APPLICABILITY
ISG

42.6 Scrollbar.StepSize

NAME
Scrollbar.StepSize – set/get scrollbar step size

FUNCTION
Set or get the number of pixels to scroll when the user clicks on one of the scrollbar’s
buttons.

Note that unless Scrollbar.AutoScale is to False, this value will be in device-
independent pixels. If you want to have physical pixels instead, you must set
Scrollbar.AutoScale to False.

Chapter 42: Scrollbar class 213

TYPE
Number

APPLICABILITY
ISG

42.7 Scrollbar.Target

NAME
Scrollbar.Target – set target widget for scrollbar

FUNCTION
Use this attribute to define the widget that is to be controlled by this scrollbar object.
This should always be provided because the scrollbar’s thumb size changes whenever
the size of its target widget changes. If you specify a target widget here, RapaGUI will
automatically update the scrollbar’s thumb size whenever the size of the target widget
changes. Otherwise you will have to do this manually by setting Scrollbar.Visible

whenever the thumb size changes.

TYPE
MOAI object

APPLICABILITY
I

42.8 Scrollbar.UseWinBorder

NAME
Scrollbar.UseWinBorder – put scrollbar object into window border

PLATFORMS
AmigaOS and compatibles only

FUNCTION
Set this attribute to make RapaGUI put the scrollbar object into the window border
instead of creating a widget which can be put into a group object.

Before using Scrollbar.UseWinBorder you first have to enable border scrollers for the
parent window by setting the appropriate window class attributes. For example, if you
want to put the scrollbar into the bottom window border, you would have to set the
Window.UseBottomBorderScroller attribute first. See Section 62.1 [Window class],
page 301, for details.

Also note that there obviously can only be two scrollbars in the window border: One on
the left or right, and one in the bottom window border.

The following values are recognized by this attribute:

Left Use left window border.

Right Use right window border.

214 RapaGUI manual

Bottom Use bottom window border.

TYPE
String (see above for possible values)

APPLICABILITY
I

42.9 Scrollbar.Visible

NAME
Scrollbar.Visible – set/get number of visible entries

FUNCTION
Set or get the number of visible entries and update the scrollbar’s thumb size accordingly.
If you haven’t provided a target widget by specifying Scrollbar.Target, you have to
update the scrollbar’s thumb size using this attribute whenever the size of the target
widget changes.

Note that unless Scrollbar.AutoScale is to False, this value will be in device-
independent pixels. If you want to have physical pixels instead, you must set
Scrollbar.AutoScale to False.

TYPE
Number

APPLICABILITY
ISG

215

43 Scrollcanvas class

43.1 Overview

Scrollcanvas class derives from Area class and creates a canvas with scrollbars attached.
You can draw custom graphics to this canvas via a paint callback that is automatically
invoked whenever content needs to be drawn. You just need to set up a notification on
the Scrollcanvas.Paint attribute and your event handler will be called whenever content
needs to be drawn. The same thing can be achieved by embedding a widget derived from
Hollywood class inside a scrollgroup or connecting such a Hollywood widget to scrollbars but
Scrollcanvas class is preferable in some cases because it is optimized especially for scrolled
content, i.e. it tries to minimize painting by using OS widgets which are specifically designed
for displaying scrolled content. Thus, it is usually faster than the two solutions outlined
above.

You can set the canvas dimensions by using the Scrollcanvas.VirtWidth and
Scrollcanvas.VirtHeight. Since Scrollcanvas class uses scrollbars, the dimensions of
the canvas can obviously be much bigger than the physical dimensions of the scrollcanvas
widget. As with all other classes, you can set those physical dimensions using the generic
Area.Width and Area.Height attributes.

To force a complete redraw of your widget, just run the Area.Redraw method on your
object. Running Area.Redraw on your object will result in your paint function being called
so that you can update the canvas accordingly.

With Scrollcanvas class the dimensions you specify in Scrollcanvas.VirtWidth and
Scrollcanvas.VirtHeight are in device-independent pixels by default and RapaGUI
will automatically apply the system’s scale factor to the contents drawn by the
Scrollcanvas.Paint function. If you want to have fine-tuned control, you can set the
Scrollcanvas.AutoScale attribute to False. In that case, Scrollcanvas.VirtWidth

and Scrollcanvas.VirtHeight are interpreted as physical pixels and no auto scaling
will be done so that your paint function can draw high resolutions graphics without any
quality loss due to scaling. See Section 3.12 [High-DPI support], page 20, for details.

43.2 Scrollcanvas.AutoBars

NAME
Scrollcanvas.AutoBars – set scrollbar visibility

FUNCTION
By default, the scrollbars will automatically be hidden when they are not needed. If you
don’t want this behaviour, set this attribute to False. In that case the scrollbars will
always be visible even when they’re not needed.

TYPE
Boolean

APPLICABILITY
I

216 RapaGUI manual

43.3 Scrollcanvas.AutoScale

NAME
Scrollcanvas.AutoScale – enable/disable autoscaling (V2.0)

FUNCTION
By default, scrollcanvas class will use device-independent pixels and will then scale its
canvas to fit to the current monitor’s DPI settings. If you don’t want that, set this
attribute to False. In that case, your scrollcanvas widget will operate completely in
physical pixel mode and no autoscaling will be done. See Section 3.12 [High-DPI sup-
port], page 20, for details.

This attribute defaults to what has been set in the ScaleGUI tag when calling @REQUIRE

on the RapaGUI plugin. Note that when not set, ScaleGUI defaults to True. See
Section 3.4 [Initializing RapaGUI], page 11, for details.

TYPE
Boolean

APPLICABILITY
I

43.4 Scrollcanvas.Paint

NAME
Scrollcanvas.Paint – request paint notification

FUNCTION
Set up a listener on this attribute to have your event handler called whenever content
needs to be drawn on the canvas. Your event handler can then paint the canvas contents
depending on the current scrollbar position.

RapaGUI will pass the identifier of a Hollywood brush whose size is exactly as big as
the visible area of your scrollcanvas widget to your callback. You then have to draw the
desired contents to this brush. Precisely, you just have to draw to the rectangle defined
by the four coordinates X, Y, Width, and Height which are passed to your callback as
well. These four coordinates describe a rectangular area within the dimensions of the
brush that is passed to your callback. When a full redraw is needed, X and Y will be 0
and Width and Height will match the dimensions of the brush. Most oftenly, however,
only a partial redraw is needed and then you must only draw to the portion of the brush
defined by those coordinates.

The following extra arguments will be passed to your event handler:

Brush: Contains the identifier of a brush you have to draw to. Use Hollywood’s
SelectBrush() command to select this brush as the output device in your
callback. Don’t forget to call EndSelect() when you are done!

ViewWidth:

Contains the visible width of widget. This is also identical to the width of
the brush that is passed to your callback.

Chapter 43: Scrollcanvas class 217

ViewHeight:

Contains the visible height of widget. This is also identical to the height of
the brush that is passed to your callback.

ScrollX: Contains the position of the horizontal scrollbar.

ScrollY: Contains the position of the vertical scrollbar.

VirtWidth:

Contains the virtual width of your widget. This is the value set using
Scrollcanvas.VirtWidth.

VirtHeight:

Contains the virtual height of your widget. This is the value set using
Scrollcanvas.VirtHeight.

X: Contains the x-position inside the brush at which you should start drawing.
See above for details.

Y: Contains the y-position inside the brush at which you should start drawing.
See above for details.

Width: Contains the number of columns you should paint to the brush (starting
from X). See above for details.

Height: Contains the number of rows you should paint to the brush (starting from
Y). See above for details.

To compute the absolute position of the content that should be drawn to the canvas,
just add the ScrollX+X and ScrollY+Y coordinates and you’re done.

See Section 3.7 [Notifications], page 13, for details.

TYPE
Boolean

APPLICABILITY
N

43.5 Scrollcanvas.Scroll

NAME
Scrollcanvas.Scroll – scroll the canvas

SYNOPSIS
moai.DoMethod(id, "Scroll", x, y)

FUNCTION
Scrolls the canvas to the positions specified by x and y.

INPUTS

id id of the scrollcanvas object

x desired new x position

y desired new y position

218 RapaGUI manual

43.6 Scrollcanvas.StepSize

NAME
Scrollcanvas.StepSize – set/get scrollbar step size

FUNCTION
Set or get the number of pixels to scroll when the user clicks on one of the scrollbar’s
buttons.

TYPE
Number

APPLICABILITY
ISG

43.7 Scrollcanvas.UseLeftBorder

NAME
Scrollcanvas.UseLeftBorder – use left border scroller

PLATFORMS
AmigaOS and compatibles only

FUNCTION
When using Scrollcanvas.UseWinBorder the scrollbars will be put into the right and
bottom window borders by default. If you want to have the vertical scrollbar in the left
window border instead, set the Scrollcanvas.UseLeftBorder attribute.

Don’t forget to set the Window.UseLeftBorderScroller attribute as well.

TYPE
Boolean

APPLICABILITY
I

43.8 Scrollcanvas.UseWinBorder

NAME
Scrollcanvas.UseWinBorder – use window scrollbars for this scrollcanvas

PLATFORMS
AmigaOS and compatibles only

FUNCTION
Set this attribute to make RapaGUI put the scrollcanvas’ scrollbars into the window
border instead of creating them as normal widgets.

By default, the scrollbars will be put into the right and bottom window borders. If
you want to have the vertical scrollbar in the left window border instead, set the
Scrollcanvas.UseLeftBorder attribute.

Chapter 43: Scrollcanvas class 219

Before using Scrollcanvas.UseWinBorder you first have to enable border scrollers
for the parent window by setting the appropriate window class attributes. For the
standard configuration (right and bottom border scrollers), you would have to set the
Window.UseBottomBorderScroller and Window.UseRightBorderScroller attributes.
See Section 62.1 [Window class], page 301, for details.

TYPE
Boolean

APPLICABILITY
I

43.9 Scrollcanvas.VirtHeight

NAME
Scrollcanvas.VirtHeight – set/get canvas height

FUNCTION
Sets or gets the canvas height. Normally this value must be in device-independent pixels.
If you want your scrollcanvas to use physical pixels instead of device-independent ones,
you must set the Scrollcanvas.AutoScale attribute to False. See Section 3.12 [High-
DPI support], page 20, for details.

This is called "virtual height" because usually only a portion of it is actually visible.
The user can use the scrollbars to scroll through the complete canvas content.

This value must be provided.

TYPE
Number

APPLICABILITY
ISG

43.10 Scrollcanvas.VirtWidth

NAME
Scrollcanvas.VirtWidth – set/get canvas width

FUNCTION
Sets or gets the canvas width. Normally this value must be in device-independent pixels.
If you want your scrollcanvas to use physical pixels instead of device-independent ones,
you must set the Scrollcanvas.AutoScale attribute to False. See Section 3.12 [High-
DPI support], page 20, for details.

This is called "virtual width" because usually only a portion of it is actually visible. The
user can use the scrollbars to scroll through the complete canvas content.

This value must be provided.

TYPE
Number

220 RapaGUI manual

APPLICABILITY
ISG

221

44 Scrollgroup class

44.1 Overview

Scrollgroup class is a special variant of Group class which adds scrollbars to groups to
make it possible to use groups which are larger than the available GUI space. The user
can simply scroll through the group then using the scrollbars attached to the group. When
there is enough space for the complete group, the scrollbars are automatically hidden unless
explicitly configured not to do so.

Scrollgroups can be created in a similar fashion to normal groups. Here is an XML example:

<scrollgroup>

<radio>

<item>Amiga 500</item>

<item>Amiga 1200</item>

<item>Amiga 4000</item>

</radio>

<listview>

<column/>

</listview>

</scrollgroup>

The XML code above embeds a radio and a listview object inside a scrollgroup.

44.2 Scrollgroup.AutoBars

NAME
Scrollgroup.AutoBars – set scrollbar visibility

FUNCTION
By default, the scrollbars will automatically be hidden when they are not needed. If you
don’t want this behaviour, set this attribute to False. In that case the scrollbars will
always be visible even when they’re not needed.

TYPE
Boolean

APPLICABILITY
I

44.3 Scrollgroup.Horiz

NAME
Scrollgroup.Horiz – set group orientation

FUNCTION
Set this to True to create a horizontal scrollgroup. By default, scrollgroups use vertical
orientation.

222 RapaGUI manual

TYPE
Boolean

APPLICABILITY
I

44.4 Scrollgroup.UseWinBorder

NAME
Scrollgroup.UseWinBorder – use window scrollbars for this scrollgroup

PLATFORMS
AmigaOS and compatibles only

FUNCTION
Set this attribute to make RapaGUI put the scrollgroup’s scrollbars into the window
border instead of creating them as normal widgets.

Before using Scrollgroup.UseWinBorder you first have to enable border scrollers for
the parent window by setting the appropriate window class attributes. For example,
if you want to put a scrollbar into the bottom window border, you would have to set
the Window.UseBottomBorderScroller attribute first. See Section 62.1 [Window class],
page 301, for details.

TYPE
Boolean

APPLICABILITY
I

223

45 Slider class

45.1 Overview

Slider class derives from Area class and creates a widget which allows the user to adjust
a numeric value using a thumb which can be pulled back and forth to change the value.
Sliders can use horizontal or vertical orientation depending on the Slider.Horiz attribute.
By default a horizontal slider is created.

Here is an XML example of a slider that allows the user to configure a number ranging from
0 to 100:

<slider min="0" max="100"/>

45.2 Slider.Drag

NAME
Slider.Drag – learn about thumb drag events (V2.0)

FUNCTION
This attribute is set whenever the user starts to drag the thumb. You can set up a
notification on this attribute in order to be notified whenever the user starts dragging
the slider’s thumb.

TYPE
Boolean

APPLICABILITY
N

45.3 Slider.Horiz

NAME
Slider.Horiz – set/get orientation of slider

FUNCTION
Specify whether you want a horizontal or vertical slider. Defaults to True which means
create a horizontal slider.

TYPE
Boolean

APPLICABILITY
I

224 RapaGUI manual

45.4 Slider.Level

NAME
Slider.Level – set/get current slider level

FUNCTION
The current position of the slider thumb. This value will always be between Slider.Min

and Slider.Max.

You can also set up a notification on this attribute to get notified whenever the thumb
position changes.

TYPE
Number

APPLICABILITY
ISGN

45.5 Slider.Max

NAME
Slider.Max – set/get maximum level of slider

FUNCTION
Set or get the maximum value for the slider object.

TYPE
Number

APPLICABILITY
ISG

45.6 Slider.Min

NAME
Slider.Min – set/get minimum level of slider

FUNCTION
Set or get the minimum value for the slider object. This can also be less than 0.

TYPE
Number

APPLICABILITY
ISG

Chapter 45: Slider class 225

45.7 Slider.Quiet

NAME
Slider.Quiet – do not show current slider level

FUNCTION
Set this to True to make the slider hide its current level. Normally, the current level is
shown either inside the slider’s thumb or in a text widget next to the slider.

TYPE
Boolean

APPLICABILITY
I

45.8 Slider.Release

NAME
Slider.Release – learn about thumb release events

FUNCTION
This attribute is set whenever the user releases the thumb. You can set up a notification
on this attribute in order to be notified whenever the user lets loose of the thumb.

TYPE
Boolean

APPLICABILITY
N

45.9 Slider.Reverse

NAME
Slider.Reverse – reverse direction of slider

FUNCTION
Set this attribute to True to reverse the direction of the slider.

TYPE
Boolean

APPLICABILITY
I

45.10 Slider.StepSize

NAME
Slider.StepSize – set/get slider step size (V2.0)

226 RapaGUI manual

PLATFORMS
Windows, Linux, macOS

FUNCTION
Set or get the slider step size. This value indicates how much the slider’s level should be
increased or decreased when clicking outside the slider thumb. The default step size is
1.

TYPE
Number

APPLICABILITY
ISG

227

46 Statusbar class

46.1 Overview

Statusbar class derives from Area class and creates a widget placed at the bottom of the
window to give small amounts of status information. Status bars contain one or more
children of Statusbaritem class, all of which can be either of fixed or variable lengths.

When creating a status bar in XML, you have to specify how many fields it should get by
using the <item> tag to add children of Statusbaritem class to your status bar. Here is an
example of a status bar with three fields:

<statusbar>

<item id="first">Welcome to my application</item>

<item id="second"/>

<item id="third" width="20"/>

</statusbar>

You can set the widths of the individual fields using the Statusbaritem.Width attribute.
Above we assign a fixed width only to the third field. The other two use variable widths.

The text of status bar items can be changed later by setting the Statusbaritem.Text

attribute. Note, however, that this often isn’t even necessary because the text provided
in the Menuitem.Help and Toolbarbutton.Help attributes is automatically shown in the
status bar and doesn’t require any additional code on your part.

There can be only one status bar per window and it always has to be the last child of the
window’s root group. RapaGUI won’t accept status bars at random positions in the GUI
layout. Status bars must always be the last child of the window’s root group. Thus, they
are always placed at the bottom of the window layout.

Also note that it is not possible to create stand-alone instances of this class using
moai.CreateObject(). Status bars always have to be created within the context of a
window. Thus, if you want to create status bars using moai.CreateObject(), you always
have to create a complete window and embed the status bar in this window declaration.

Statusbar class doesn’t define any attributes or methods itself. See Section 47.1 [Status-
baritem class], page 229, for all necessary information.

229

47 Statusbaritem class

47.1 Overview

Statusbaritem class is used to create text fields which are used as children for Statusbar
class. You cannot create independent instances of Statusbaritem class. They always need to
be embedded into Statusbar class. See Section 46.1 [Statusbar class], page 227, for details.

47.2 Statusbaritem.Text

NAME
Statusbaritem.Text – set/get item text

FUNCTION
Set or get the status bar item’s text.

TYPE
String

APPLICABILITY
SG

47.3 Statusbaritem.Width

NAME
Statusbaritem.Width – set item width

FUNCTION
Set the desired width of the status bar item. This can be either an absolute value
in device-independent pixels for a fixed width field or a negative value indicating a
proportion for a variable width field. The space left for all variable width fields is
divided between them according to the absolute value of this number. A variable width
field with width of -2 gets twice as much of it as a field with width -1 and so on.

For example, to create one fixed width field of width 100 in the right part of the status
bar and two more fields which get 66% and 33% of the remaining space correspondingly,
you would set the width fields of the items to -2, -1 and 100, respectively.

Defaults to -1.

TYPE
Number

APPLICABILITY
I

231

48 Text class

48.1 Overview

Text class derives from Area class and creates widgets that display one or more lines of text,
pretty similar to what widgets of Label class do. A difference is that Text class supports
multiple lines of text as well as frames around the text and widgets created by Text class
are resizable whereas Label class creates non-sizeable widgets. Like Label class, Text class
also supports the underscore character in its text to define a keyboard shortcut.

Please note that Text class supports neither automatic word wrapping nor text formatting.
If you want to have these features, you have to use Textview class instead. See Section 51.1
[Textview class], page 255, for details.

Here is an example of how to use the <text> tag in XML:

<text>Hello World</text>

48.2 Text.Align

NAME
Text.Align – set/get text alignment

FUNCTION
Set the desired alignment for the text. This can be one of the following values:

Left Left alignment. This is the default.

Right Right alignment.

Center Centered alignment.

TYPE
String (see above for possible values)

APPLICABILITY
ISG

48.3 Text.Frame

NAME
Text.Frame – add frame around text widget

FUNCTION
Set this to True to get a frame around the text widget.

TYPE
Boolean

APPLICABILITY
I

232 RapaGUI manual

48.4 Text.Text

NAME
Text.Text – set/get text string

FUNCTION
Set or get the text string. The text may contain newline characters.

TYPE
String

APPLICABILITY
SG

233

49 Texteditor class

49.1 Overview

Texteditor class derives from Area class and creates multi-line text entry widgets with
most of the functions of a normal text editor. It also supports text formatting via certain
character codes if Texteditor.Styled has been set. This allows you to enable certain
styles (bold, italic, underline) for your text as well as change the color of your text. See
Section 3.14 [Text formatting codes], page 22, for details. The XML tag’s content is used
as the initial contents of the text editor widget.

Here is an XML example of how to include a text editor object in your GUI:

<texteditor>Enter your text here!</texteditor>

Note that there is a slight difference between the texteditor widget on Windows and all other
platforms: Windows’ native texteditor widget uses two characters between lines (CRLF,
i.e. carriage return and linefeed) whereas on all other platforms only a linefeed character is
used. This leads to the problem that hard-coded index or range positions are not completely
portable because Windows always uses two characters to start a new line. Be prepared to
deal with this problem.

Also note that this class requires the TextEditor.mcc extension to be installed on AmigaOS
and compatibles.

49.2 Texteditor.Align

NAME
Texteditor.Align – set/get text alignment

FUNCTION
Set/get the text alignment.

The following values are possible:

Left Left alignment.

Right Right alignment.

Center Centered alignment.

TYPE
String (see above for possible values)

APPLICABILITY
ISG

49.3 Texteditor.AreaMarked

NAME
Texteditor.AreaMarked – learn about marked areas

234 RapaGUI manual

FUNCTION
This tag will be set to True when text is marked, and back to False when nothing
is marked. You can create a notify event with this tag and let your cut/copy buttons
become ghosted when nothing is marked.

TYPE
Boolean

APPLICABILITY
GN

49.4 Texteditor.Bold

NAME
Texteditor.Bold – set/get bold style

FUNCTION
This tag shows whether the cursor or block is over bolded text or not. You can set up
a notification on this tag to learn about style changes. You can set this tag to True or
False if you want the style changed.

Note that this feature requires Texteditor.Styled to be set to True.

TYPE
Boolean

APPLICABILITY
SGN

49.5 Texteditor.Clear

NAME
Texteditor.Clear – clear text

SYNOPSIS
moai.DoMethod(id, "Clear")

FUNCTION
This will clear all the text in the widget.

Note that even though setting this attribute will not trigger a Texteditor.HasChanged

notification it will set Texteditor.HasChanged to False.

INPUTS

id id of the text editor object

Chapter 49: Texteditor class 235

49.6 Texteditor.Color

NAME
Texteditor.Color – set/get current text color

FUNCTION
This attribute can be used to set/get the current text color. Any text entered after
setting this attribute will appear in the specified color. To change the color of existing
text, use the Texteditor.SetColor method instead. The color has to be passed as a
24-bit RGB value.

You can also setup a notification on this attribute to learn when the cursor has been
moved over text in a different color.

Note that this feature requires Texteditor.Styled to be set to True.

TYPE
Number

APPLICABILITY
SGN

49.7 Texteditor.Copy

NAME
Texteditor.Copy – copy marked text

SYNOPSIS
moai.DoMethod(id, "Copy")

FUNCTION
Copy currently selected text to clipboard.

INPUTS

id id of the text editor object

49.8 Texteditor.CursorPos

NAME
Texteditor.CursorPos – set/get cursor position

FUNCTION
You can get or set the cursor’s position with this tag. The initial character starts at
position 0.

You can also set up a notification on this tag to learn when the cursor is moved.

TYPE
Number

APPLICABILITY
SGN

236 RapaGUI manual

49.9 Texteditor.Cut

NAME
Texteditor.Cut – cut marked text

SYNOPSIS
moai.DoMethod(id, "Cut")

FUNCTION
Cut currently selected text and put it in the clipboard.

INPUTS

id id of the text editor object

49.10 Texteditor.GetLineLength

NAME
Texteditor.GetLineLength – get number of characters in line (V2.0)

SYNOPSIS
len = moai.DoMethod(id, "GetLineLength", line)

FUNCTION
This method returns the number of characters in the line specified by line. Trailing
characters like carriage return or linefeed will not be included in the count. Line indices
are counted from 0.

INPUTS

id id of the text editor object

line index of line to query (starting from 0)

RESULTS

len number of characters in line

49.11 Texteditor.GetPosition

NAME
Texteditor.GetPosition – get index position from column and row (V2.0)

SYNOPSIS
pos = moai.DoMethod(id, "GetPosition", x, y)

FUNCTION
This method converts the column and row position specified by x and y into an index
position. All values start at index 0. For invalid column and row positions, -1 is returned.

INPUTS

id id of the text editor object

x column position

Chapter 49: Texteditor class 237

y row position

RESULTS

pos index of the specified column and row position

49.12 Texteditor.GetSelection

NAME
Texteditor.GetSelection – get text selection

SYNOPSIS
start, end = moai.DoMethod(id, "GetSelection")

FUNCTION
This method returns the start and stop positions of the currently selected text. The first
character of the text is at position 0. If there is no marked area, -1 is returned for both
values.

INPUTS

id id of the text editor object

RESULTS

start start offset of marked text

end end offset of marked text

49.13 Texteditor.GetText

NAME
Texteditor.GetText – export portion of the current text

SYNOPSIS
t$ = moai.DoMethod(id, "GetText", start, end)

FUNCTION
This method exports the portion of the current text between start and end and returns
it. Positions are counted from 0.

INPUTS

id id of the text editor object

start start position of desired block

end end position of desired block

RESULTS

t$ text at the specified block coordinates

238 RapaGUI manual

49.14 Texteditor.GetXY

NAME
Texteditor.GetXY – convert index position into column and row

SYNOPSIS
x, y = moai.DoMethod(id, "GetXY", pos)

FUNCTION
This method converts the specified index position into its column and row constituents.
Both column and row counters start at index 0. For invalid indices, -1 is returned.

INPUTS

id id of the text editor object

pos index position to convert

RESULTS

x column offset of the specified index

y row offset of the specified index

49.15 Texteditor.HasChanged

NAME
Texteditor.HasChanged – learn about content change

FUNCTION
This attribute is set when the user changes the contents of the text. You can set up a
notification on this attribute to learn about these changes.

Note that even though Texteditor.HasChanged will not trigger when set-
ting Texteditor.Text or calling Texteditor.Clear those two will still lead
Texteditor.HasChanged to be set to False.

TYPE
Boolean

APPLICABILITY
SGN

49.16 Texteditor.Hint

NAME
Texteditor.Hint – set/get text hint (V2.0)

FUNCTION
Set and get a texteditor widget’s hint. The hint will be shown whenever there is no text
in the widget. It can be used to give the user a hint concerning what he is expected to
enter in the widget.

Chapter 49: Texteditor class 239

TYPE
String

APPLICABILITY
ISG

49.17 Texteditor.Insert

NAME
Texteditor.Insert – insert text

SYNOPSIS
moai.DoMethod(id, "Insert", t$, pos$)

FUNCTION
This will insert the given text t$ at the specified position. The position of the inserted
text can be one of the following:

Cursor Insert at current cursor position.

Top Insert at the top.

Bottom Insert at the bottom.

INPUTS

id id of the text editor object

t$ text to insert

pos$ insert position (see above for possible values)

49.18 Texteditor.Italic

NAME
Texteditor.Italic – set/get italic style

FUNCTION
This tag shows whether the cursor or block is over italics text or not. You can set up
a notification on this tag to learn about style changes. You can set this tag to True or
False if you want the style changed.

Note that this feature requires Texteditor.Styled to be set to True.

TYPE
Boolean

APPLICABILITY
SGN

240 RapaGUI manual

49.19 Texteditor.Mark

NAME
Texteditor.Mark – mark text

SYNOPSIS
moai.DoMethod(id, "Mark", start, end)

FUNCTION
This method will mark the text in the area delimited by start and end. The first
character starts at position 0.

INPUTS

id id of the text editor object

start start position

end end position

49.20 Texteditor.MarkAll

NAME
Texteditor.MarkAll – mark all text

SYNOPSIS
moai.DoMethod(id, "MarkAll")

FUNCTION
Marks all text in the widget.

INPUTS

id id of the text editor object

49.21 Texteditor.MarkNone

NAME
Texteditor.MarkNone – clear text selection

SYNOPSIS
moai.DoMethod(id, "MarkNone")

FUNCTION
Clears text selection.

INPUTS

id id of the text editor object

Chapter 49: Texteditor class 241

49.22 Texteditor.NoWrap

NAME
Texteditor.NoWrap – disable wordwrapping

FUNCTION
By default, texteditor widgets will automatically use wordwrapping when words run
beyond the available widget space. Set this tag to True if you don’t want this. In that
case, the texteditor widget will use a horizontal scrollbar instead of wrapping words to
the next line.

TYPE
Boolean

APPLICABILITY
I

49.23 Texteditor.Paste

NAME
Texteditor.Paste – paste text from clipboard

SYNOPSIS
moai.DoMethod(id, "Paste")

FUNCTION
Pastes text from clipboard into the text editor widget.

INPUTS

id id of the text editor object

49.24 Texteditor.ReadOnly

NAME
Texteditor.ReadOnly – put text editor in read-only mode

FUNCTION
Set this tag to True to put the widget into read-only mode.

This is probably of not much use since there is Textview class for displaying non-editable
text. See Section 51.1 [Textview class], page 255, for details.

TYPE
Boolean

APPLICABILITY
I

242 RapaGUI manual

49.25 Texteditor.Redo

NAME
Texteditor.Redo – redo last operation

SYNOPSIS
moai.DoMethod(id, "Redo")

FUNCTION
Redo last operation of text editor widget.

INPUTS

id id of the text editor object

49.26 Texteditor.RedoAvailable

NAME
Texteditor.RedoAvailable – learn when redo is available

FUNCTION
This tag is set to True when the user is able to redo his action(s) (normally after an
undo). You can create a notify on this tag and disable your redo button when there is
nothing to redo.

TYPE
Boolean

APPLICABILITY
GN

49.27 Texteditor.ScrollToLine

NAME
Texteditor.ScrollToLine – scroll line into view (V2.0)

SYNOPSIS
moai.DoMethod(id, "ScrollToLine", line)

FUNCTION
Scroll the line specified by line into view. Line indices start at 0.

INPUTS

id id of the text editor object

line line to be scrolled into view (starting from 0)

Chapter 49: Texteditor class 243

49.28 Texteditor.SetBold

NAME
Texteditor.SetBold – toggle bold style of text block

SYNOPSIS
moai.DoMethod(id, "SetBold", start, end, flag)

FUNCTION
This method toggles bold style on a text block that is defined by start and end coordi-
nates. If the flag argument is set to True, bold style will be added to the specified text
block, otherwise bold style will be removed from the text block.

Note that this feature requires Texteditor.Styled to be set to True.

INPUTS

id id of the text editor object

start start position (starting from 0)

end end position

flag boolean flag that indicates toggle state

49.29 Texteditor.SetColor

NAME
Texteditor.SetColor – change color of text block

SYNOPSIS
moai.DoMethod(id, "SetColor", start, end, color)

FUNCTION
This method changes the color of a text block that is defined by start and end coordi-
nates. The color has to be passed as a 24-bit RGB value.

To change the color that should be used for newly inserted text, use the
Texteditor.Color attribute instead.

Note that this feature requires Texteditor.Styled to be set to True.

INPUTS

id id of the text editor object

start start position (starting from 0)

end end position

color desired color for text

244 RapaGUI manual

49.30 Texteditor.SetItalic

NAME
Texteditor.SetItalic – toggle italic style of text block

SYNOPSIS
moai.DoMethod(id, "SetItalic", start, end, flag)

FUNCTION
This method toggles italic style on a text block that is defined by start and end coor-
dinates. If the flag argument is set to True, italic style will be added to the specified
text block, otherwise italic style will be removed from the text block.

Note that this feature requires Texteditor.Styled to be set to True.

INPUTS

id id of the text editor object

start start position (starting from 0)

end end position

flag boolean flag that indicates toggle state

49.31 Texteditor.SetUnderline

NAME
Texteditor.SetUnderline – toggle underline style of text block

SYNOPSIS
moai.DoMethod(id, "SetUnderline", start, end, flag)

FUNCTION
This method toggles underline style on a text block that is defined by start and stop

coordinates. If the flag argument is set to True, underline style will be added to the
specified text block, otherwise underline style will be removed from the text block.

Note that this feature requires Texteditor.Styled to be set to True.

INPUTS

id id of the text editor object

start start position (starting from 0)

end end position

flag boolean flag that indicates toggle state

Chapter 49: Texteditor class 245

49.32 Texteditor.Styled

NAME
Texteditor.Styled – enable text formatting

FUNCTION
Set this attribute to True to enable text formatting for this widget. If set to True, you
can use special text formatting codes in the text you pass to this widget. See Section 3.14
[Text formatting codes], page 22, for details.

TYPE
Boolean

APPLICABILITY
I

49.33 Texteditor.Text

NAME
Texteditor.Text – set/get text editor contents

FUNCTION
Use this attribute to set or get the contents of the texteditor object.

The string you specify here can use text formatting codes in case Texteditor.Styled

has been set to True. See Section 3.14 [Text formatting codes], page 22, for details.

Note that even though setting this attribute will not trigger a Texteditor.HasChanged

notification it will set Texteditor.HasChanged to False.

TYPE
String

APPLICABILITY
SG

49.34 Texteditor.Underline

NAME
Texteditor.Underline – set/get underline style

FUNCTION
This tag shows whether the cursor or block is over underlined text or not. You can set
up a notification on this tag to learn about style changes. You can set this tag to True

or False if you want the style changed.

Note that this feature requires Texteditor.Styled to be set to True.

TYPE
Boolean

APPLICABILITY
SGN

246 RapaGUI manual

49.35 Texteditor.Undo

NAME
Texteditor.Undo – undo last operation

SYNOPSIS
moai.DoMethod(id, "Undo")

FUNCTION
Undo last operation of text editor widget.

INPUTS

id id of the text editor object

49.36 Texteditor.UndoAvailable

NAME
Texteditor.UndoAvailable – learn when undo is available

FUNCTION
This tag is set to True when the user is able to undo his action(s). You can create a
notify on this tag and disable your undo button when there is nothing to undo.

TYPE
Boolean

APPLICABILITY
GN

247

50 Textentry class

50.1 Overview

Textentry class derives from Area class and creates single-line text entry widgets which can
be used to enter a text string.

By default, text entry widgets do not have any label next to them. If you want to have a
label next to your text entry widget, you need to put it into a <hgroup> and then use Label
class to put a label next to it.

The XML tag’s content is used as the initial contents of the text entry widget.

Here is an XML example of a text entry widget:

<textentry id="mytextentry"/>

Note that Textentry class only supports single line widgets. If you need a multi-line text
entry widget, you have to use Texteditor class instead. See Section 49.1 [Texteditor class],
page 233, for details.

50.2 Textentry.Accept

NAME
Textentry.Accept – set characters accepted by text entry widget

FUNCTION
Set this to a string containing characters that are accepted by the widget. Useful for
example if you only want to allow the entering of numbers. In that case you would set
Textentry.Accept to "0123456789".

You can also use Textentry.Reject to selectively reject characters.

TYPE
String

APPLICABILITY
I

50.3 Textentry.Acknowledge

NAME
Textentry.Acknowledge – get notified when the user hits RETURN

FUNCTION
Whenever the user hits return this attribute will be set to True. You can listen to this
notification and take the appropriate action.

Pressing the TAB key or clicking the mouse to deactivate the widget will not trigger
Textentry.Acknowledge.

TYPE
Boolean

248 RapaGUI manual

APPLICABILITY
N

50.4 Textentry.AdvanceOnCR

NAME
Textentry.AdvanceOnCR – activate next object when user hits RETURN

FUNCTION
If you set this to True, pressing RETURN will behave like pressing the TAB key, i.e. it
will give the focus to the next widget in the window.

TYPE
Boolean

APPLICABILITY
I

50.5 Textentry.Copy

NAME
Textentry.Copy – copy marked text

SYNOPSIS
moai.DoMethod(id, "Copy")

FUNCTION
Copy currently selected text to clipboard.

On AmigaOS and compatibles this method requires MUI 4.0 or better.

INPUTS

id id of the textentry object

50.6 Textentry.CursorPos

NAME
Textentry.CursorPos – set/get cursor position

FUNCTION
Sets or gets the current cursor position.

On AmigaOS and compatibles this attributes requires MUI 4.0 or better.

TYPE
Number

APPLICABILITY
SG

Chapter 50: Textentry class 249

50.7 Textentry.Cut

NAME
Textentry.Cut – cut marked text

SYNOPSIS
moai.DoMethod(id, "Cut")

FUNCTION
Cut currently selected text and put it in the clipboard.

On AmigaOS and compatibles this method requires MUI 4.0 or better.

INPUTS

id id of the textentry object

50.8 Textentry.GetSelection

NAME
Textentry.GetSelection – get text selection

SYNOPSIS
start, end = moai.DoMethod(id, "GetSelection")

FUNCTION
Returns the range of the currently selected text. Offsets start at 0 which indicates the
first character. If no text is selected, -1 is returned for both values.

INPUTS

id id of the textentry object

RESULTS

start start offset

end end offset

50.9 Textentry.Hint

NAME
Textentry.Hint – set/get text hint (V2.0)

FUNCTION
Set and get a textentry widget’s hint. The hint will be shown whenever there is no text
in the widget. It can be used to give the user a hint concerning what he is expected to
enter in the widget.

TYPE
String

APPLICABILITY
ISG

250 RapaGUI manual

50.10 Textentry.Insert

NAME
Textentry.Insert – insert text

SYNOPSIS
moai.DoMethod(id, "Insert", t$)

FUNCTION
This will insert the given text t$ at the current cursor position.

On AmigaOS and compatibles this method requires MUI 4.0 or better.

INPUTS

id id of the textentry object

t$ text to insert

50.11 Textentry.Mark

NAME
Textentry.Mark – mark text

SYNOPSIS
moai.DoMethod(id, "Mark", start, end)

FUNCTION
Marks the text starting at the first position up to the character at the last position.
Positions start at 0 which is the first character.

On AmigaOS and compatibles this method requires MUI 4.0 or better.

INPUTS

id id of the textentry object

start position of first character to mark

end position of last character to mark

50.12 Textentry.MarkAll

NAME
Textentry.MarkAll – mark all the text

SYNOPSIS
moai.DoMethod(id, "MarkAll")

FUNCTION
Marks the all the text in the widget.

On AmigaOS and compatibles this method requires MUI 4.0 or better.

INPUTS

id id of the textentry object

Chapter 50: Textentry class 251

50.13 Textentry.MarkNone

NAME
Textentry.MarkNone – clear selection

SYNOPSIS
moai.DoMethod(id, "MarkNone")

FUNCTION
Removes any text selection. The text will be completely unmarked when this method
returns.

On AmigaOS and compatibles this method requires MUI 4.0 or better.

INPUTS

id id of the textentry object

50.14 Textentry.MaxLen

NAME
Textentry.MaxLen – set maximum entry length

FUNCTION
Sets the maximum number of characters that can be entered.

TYPE
Number

APPLICABILITY
IG

50.15 Textentry.Password

NAME
Textentry.Password – put widget in password mode

FUNCTION
Set this attribute to hide the user input. Useful when entering passwords.

TYPE
Boolean

APPLICABILITY
I

50.16 Textentry.Paste

NAME
Textentry.Paste – paste text from clipboard

252 RapaGUI manual

SYNOPSIS
moai.DoMethod(id, "Paste")

FUNCTION
Pastes text from clipboard into the text entry widget.

On AmigaOS and compatibles this method requires MUI 4.0 or better.

INPUTS

id id of the textentry object

50.17 Textentry.ReadOnly

NAME
Textentry.ReadOnly – disable text editing (V2.0)

FUNCTION
Set this tag to True to put the widget into read-only mode.

This is probably of not much use since there is Text class for displaying non-editable
text. See Section 48.1 [Text class], page 231, for details.

TYPE
Boolean

APPLICABILITY
I

50.18 Textentry.Redo

NAME
Textentry.Redo – redo last operation

SYNOPSIS
moai.DoMethod(id, "Redo")

FUNCTION
Redo last operation of text entry widget.

On AmigaOS and compatibles this method requires MUI 4.0 or better.

INPUTS

id id of the textentry object

50.19 Textentry.Reject

NAME
Textentry.Reject – set characters rejected by text entry widget

Chapter 50: Textentry class 253

FUNCTION
Set this to a string containing characters that should be rejected by the widget. For
example, if you do not want to allow entering numbers you would set Textentry.Reject
to "0123456789".

You can also use Textentry.Accept to selectively accept characters.

TYPE
String

APPLICABILITY
I

50.20 Textentry.Text

NAME
Textentry.Text – set/get text entry widget contents

FUNCTION
Get and set a text entry widget’s contents.

You can also set up a notification on this attribute to get notified whenever the widget’s
contents change. Note that this will lead to an event being emitted for every keystroke.

TYPE
String

APPLICABILITY
SGN

50.21 Textentry.Undo

NAME
Textentry.Undo – undo last operation

SYNOPSIS
moai.DoMethod(id, "Undo")

FUNCTION
Undo last operation of text entry widget.

On AmigaOS and compatibles this method requires MUI 4.0 or better.

INPUTS

id id of the textentry object

255

51 Textview class

51.1 Overview

Textview class derives from Area class and can be used to show larger amounts of text in
a widget with support for wordwrapping and text formatting. The XML tag’s content is
used as the initial contents of the text view widget.

Here is an example of how to use the <textview> XML tag:

<textview>Hello World</textview>

Here is the same example in bold:

<textview styled="true">\33bHello World</textview>

The string you specify here can use text formatting codes if Textview.Styled has been set
to True. See Section 3.14 [Text formatting codes], page 22, for details.

51.2 Textview.Align

NAME
Textview.Align – set/get text alignment

FUNCTION
Set or get the desired text alignment for multiline text. This can be one of the following
values:

Left Left alignment.

Right Right alignment.

Center Centered alignment.

TYPE
String (see above for possible values)

APPLICABILITY
ISG

51.3 Textview.Append

NAME
Textview.Append – append text to end of textview (V2.0)

SYNOPSIS
moai.DoMethod(id, "Append", s$)

FUNCTION
Append the text in the string specified by s$ to the end of the textview.

On AmigaOS and compatibles this method requires MUI 4.0 or better.

INPUTS

id id of the textview object

s$ text to append

256 RapaGUI manual

51.4 Textview.Styled

NAME
Textview.Styled – enable text formatting

FUNCTION
Set this attribute to True to enable text formatting for this widget. If set to True, you
can use special text formatting codes in the text you pass to this widget. See Section 3.14
[Text formatting codes], page 22, for details.

TYPE
Boolean

APPLICABILITY
I

51.5 Textview.Text

NAME
Textview.Text – set/get contents of textview object

FUNCTION
Set or get the text to be shown by the textview widget. The text can contain linefeeds
and is automatically wordwrapped once it reaches the widget’s boundaries. Multiline
text will be aligned according to the alignment set using Textview.Align.

The string you specify here can use text formatting codes if Textview.Styled has been
set to True. See Section 3.14 [Text formatting codes], page 22, for details.

TYPE
String

APPLICABILITY
SG

257

52 Toolbar class

52.1 Overview

Toolbar class derives from Area class and creates a bar of image buttons which is typically
placed at the top of a window. The buttons can be shown in a variety of different view
modes: either as images, images and text, or just text. Usually toolbar buttons are shown
as images only.

When declaring a toolbar widget in XML code, you always need to add at least one toolbar
button to it. This is done using Toolbarbutton class. Here is an example XML declaration
of a toolbar with six buttons:

<toolbar>

<button icon="1">Open</button>

<button icon="2">Save</button>

<button/>

<button icon="3">Cut</button>

<button icon="4">Copy</button>

<button icon="5">Paste</button>

<button/>

<button icon="6">Help</button>

</toolbar>

In the XML declaration above, toolbar button 1 will use Hollywood brush 1 as its image,
button 2 will use brush 2, and so on. Note the empty <button/> declarations: These will
create spacer items to visually separate a group of buttons that belong together from the
rest of the buttons. Toolbar buttons can use many more options like special images for
selected and disabled states, tooltips, and more. See Section 53.1 [Toolbarbutton class],
page 259, for details.

There can be only one toolbar per window and it always has to be the first child of the
window’s root group. RapaGUI won’t accept toolbars at random positions in the GUI
layout. Toolbars must always be the first child of the window’s root group. Thus, they are
placed either at the top (horizontal toolbars) or at the left of the window (vertical toolbars).

Also note that it is not possible to create stand-alone instances of this class using
moai.CreateObject(). Toolbars always have to be created within the context of a
window. Thus, if you want to create toolbars using moai.CreateObject(), you always
have to create a complete window and embed the toolbar in this window declaration.

AmigaOS users please also take note that this class requires the TheBar.mcc extension to
be installed.

52.2 Toolbar.Horiz

NAME
Toolbar.Horiz – set toolbar orientation

FUNCTION
Boolean value to indicate whether the toolbar buttons shall be layouted horizontally or
vertically. Defaults to True.

258 RapaGUI manual

TYPE
Boolean

APPLICABILITY
I

52.3 Toolbar.ViewMode

NAME
Toolbar.ViewMode – set view mode of toolbar

FUNCTION
Sets the view mode of the toolbar. The following modes are supported:

TextGfx Toolbar buttons appear as text and images.

Gfx Toolbar buttons appear as images only. This is the default setting.

Text Toolbar buttons appear as text only.

TYPE
String (see above for possible values)

APPLICABILITY
I

259

53 Toolbarbutton class

53.1 Overview

Toolbarbutton class is a subclass of toolbar class. It cannot be used on its own but must
always be encapsulated inside a toolbar class definition. Toolbarbutton class creates a single
button for its super toolbar class.

Please note that the XML tag for this class is just <button>, not <toolbarbutton>. See
Section 52.1 [Toolbar class], page 257, for an example.

53.2 Toolbarbutton.Disabled

NAME
Toolbarbutton.Disabled – enable/disable button

FUNCTION
Enable/disable a toolbar button.

TYPE
Boolean

APPLICABILITY
ISG

53.3 Toolbarbutton.Help

NAME
Toolbarbutton.Help – set help text for toolbar button

FUNCTION
Set the toolbar button’s help text. This text is automatically shown in the status bar of
the window that hosts the toolbar whenever the mouse is moved over the toolbar button.
This is quite convenient for the user because it explains the function of the individual
toolbar buttons in an elegant way. See Section 46.1 [Statusbar class], page 227, for
details.

Note that this is not the same as Toolbarbutton.Tooltip. Tooltips are shown as little
windows right next to the toolbar button if the mouse has been hovering over it for some
time. The help text, on the other hand, is shown immediately in the window’s status
bar as soon as the mouse cursor is over a toolbar button.

TYPE
String

APPLICABILITY
I

260 RapaGUI manual

53.4 Toolbarbutton.Icon

NAME
Toolbarbutton.Icon – set toolbar button image

FUNCTION
Set this attribute to the identifier of a Hollywood brush or icon to add an image to
your toolbar button. Whether this attribute expects a Hollywood brush or icon, de-
pends on what you specify in the Toolbarbutton.IconType attribute. By default,
Toolbarbutton.Icon expects a Hollywood brush.

Note that RapaGUI might scale the image to fit to the current monitor’s DPI setting.
Please read the chapter on high-DPI support for more information. See Section 3.12
[High-DPI support], page 20, for details.

Please also read about RapaGUI’s image cache to learn more about icon support in
RapaGUI. See Section 3.20 [Image cache], page 30, for details.

TYPE
Number

APPLICABILITY
I

53.5 Toolbarbutton.IconScale

NAME
Toolbarbutton.IconScale – configure automatic image scaling (V2.0)

FUNCTION
If Toolbarbutton.Icon has been set to a raster brush and RapaGUI is running on a
high-DPI display, RapaGUI will automatically scale the brush’s raster graphics to fit to
the current monitor’s DPI setting. If you don’t want that, set this tag to False.

Alternatively, you can also globally disable automatic image scaling by setting the
ScaleGUI tag to False when calling @REQUIRE on RapaGUI. See Section 3.4 [Initial-
izing RapaGUI], page 11, for details.

Please also read the chapter about high-DPI support in RapaGUI to learn more about
supporting high-DPI displays. See Section 3.12 [High-DPI support], page 20, for details.

TYPE
Boolean

APPLICABILITY
I

53.6 Toolbarbutton.IconType

NAME
Toolbarbutton.IconType – set icon type to use (V2.0)

Chapter 53: Toolbarbutton class 261

FUNCTION
This attribute allows you to set the type of the Hollywood image object passed in the
Toolbarbutton.Icon attribute. By default, Toolbarbutton.Icon expects a Hollywood
brush. By setting Toolbarbutton.IconType, however, you can make it use a different
Hollywood image type.

The following image types are currently available:

Brush Use a Hollywood brush. This is the default type. You can use either raster
or vector brushes. Vector brushes have the advantage that they can be
scaled to any resolution without losses in quality. This is very useful when
designing applications that should be compatible with high-DPI monitors.
See Section 3.12 [High-DPI support], page 20, for details.

Icon Use a Hollywood icon. This image type has the advantage that it can contain
several subimages of different sizes. This makes it possible to provide images
in different resolutions which can be very useful when designing applications
that should be compatible with high-DPI monitors. See Section 3.12 [High-
DPI support], page 20, for details.

Note that you can globally change the default of all IconType attributes to Holly-
wood icons by setting the Application.UseIcons tag. See Section 9.13 [Applica-
tion.UseIcons], page 65, for details.

TYPE
String (see above for possible values)

APPLICABILITY
I

53.7 Toolbarbutton.Pressed

NAME
Toolbarbutton.Pressed – learn when a button is pressed

FUNCTION
This attribute is triggered when the user presses the button. RapaGUI automatically
listens to this attribute for all toolbar buttons so you do not need to explicitly request a
notification using the MOAI.Notify attribute.

TYPE
Boolean

APPLICABILITY
N

53.8 Toolbarbutton.Selected

NAME
Toolbarbutton.Selected – toggle selection state

262 RapaGUI manual

FUNCTION
Use this to toggle the selection state of a toggle or radio button or listen to the current
state of a toggle or radio button.

RapaGUI automatically listens to this attribute for all toolbar buttons so you do not
need to explicitly request a notification using the MOAI.Notify attribute.

TYPE
Boolean

APPLICABILITY
ISGN

53.9 Toolbarbutton.Tooltip

NAME
Toolbarbutton.Tooltip – set tooltip for toolbar button

FUNCTION
Sets the toolbar button’s tooltip.

Note that this is not the same as Toolbarbutton.Help. Tooltips are shown as little
windows right next to the toolbar button if the mouse has been hovering over it for some
time. The help text, on the other hand, is shown immediately in the window’s status
bar as soon as the mouse cursor is over a toolbar button.

TYPE
String

APPLICABILITY
I

53.10 Toolbarbutton.Type

NAME
Toolbarbutton.Type – set type of button to create

FUNCTION
This defines the type of toolbar button you would like to have. The following types are
currently possible:

Normal Normal toolbar button.

Toggle Toolbar button that can be toggled between two states.

Radio Toolbar button that forms a group with its neighbouring buttons. Only one
member of the group can be selected at a time.

TYPE
String (see above for possible values)

APPLICABILITY
I

263

54 Treeview class

54.1 Overview

Treeview class derives from Area class and visualizes complex data structures using a tree
model. The data is presented as a hierarchy in which every item can contain an infinite
number of sub-items. Items that contain sub-items are called nodes whereas items with no
sub-items are called leaves. RapaGUI’s treeview class is very powerful and supports multi-
column trees, checkboxes, editable nodes and leaves, and icons for the individual treeview
items.

When creating a treeview in XML code, you always have to add at least one column to
it. This is done by using Treeviewcolumn class. Here is an example of a minimal treeview
declaration with just a single column:

<treeview>

<column/>

</treeview>

It is also possible to add some entries to the treeview right at declaration time. This
can be done by using the <node> and <leaf> tags which refer to Treeviewnode class and
Treeviewleaf class, respectively. A treeview node always contains just a single entry, even
for multi-column treeviews. Treeview leaves, however, have to declare as many items as
there are columns in the treeview. Thus, you have to use one <item> tag per column inside
the <leaf> to create these individual items. Here is an example declaration:

<treeview>

<column/>

<node name="CPU">

<leaf><item>Model: Motorola MPC 7447 Apollo V1.1</item></leaf>

<leaf><item>CPU speed: 999 Mhz</item></leaf>

<leaf><item>FSB speed: 133 Mhz</item></leaf>

<leaf><item>Extensions: performancemonitor altivec</item></leaf>

</node>

<node name="Machine">

<leaf><item>Machine name: Pegasos II</item></leaf>

<leaf><item>Memory: 524288 KB</item></leaf>

<leaf><item>Extensions: bus.pci bus.agp</item></leaf>

</node>

<node name="Expansion buses">

<node name="PCI/AGP">

<leaf><item>Vendor 0x11AB Device 0x6460</item></leaf>

</node>

</node>

<node name="Libraries">

<leaf><item>0x6c7d4a58: exec.library V53.34</item></leaf>

</node>

<node name="Devices">

<leaf><item>0x6ff8fba4: ramdrive.device V52.6</item></leaf>

264 RapaGUI manual

</node>

<node name="Tasks">

<node name="input.device">

<leaf><item>Stack: 0x6ff4b000 - 0x6ff5b000</item></leaf>

<leaf><item>Signals: SigWait 0x00000000</item></leaf>

<leaf><item>State: Task (Waiting)</item></leaf>

</node>

</node>

</treeview>

As you can see, we have created a single-column treeview with the XML code above. Thus,
we only have to use <item> once per <leaf> declaration. For multi-column trees you’d have
to use as many <item> tags as there are columns in your treeview. See Section 56.1 [Tree-
viewleaf class], page 283, for details. See Section 57.1 [Treeviewleafitem class], page 289,
for details.

In the example we have also made use of the Treeviewnode.Name attribute to add a name
to each of our nodes. There are some more attributes that you can use to customize the
appearance of your nodes. See Section 58.1 [Treeviewnode class], page 291, for details. For
example, to refer to an item (node or leaf) in a treeview object, you have to assign a unique
ID string to it. You can then refer to this item by simply using this ID string. IDs are
either assigned during object creation in XML code or when calling Treeview.InsertNode

or Treeview.InsertLeaf.

In the example above we do not define any attributes for the treeview column. It is, however,
possible to customize the appearance of treeview columns. For example, you can use the
Treeviewcolumn.Title attribute to add a title bar to each of your columns. Furthermore,
you can also add checkboxes to your columns and allow the editing of column items. See
Section 55.1 [Treeviewcolumn class], page 277, for details.

Note that RapaGUI might use two different kinds of widgets for this class: In case you are
creating a treeview that doesn’t use any advanced functionality (such as multiple columns,
checkboxes, editable items, decorations) RapaGUI might create a more basic treeview wid-
get for you because some operating systems offer two different treeview-based widgets.
RapaGUI will use the light widget in case your treeview doesn’t use any of the advanced
features because it’s faster. If you don’t want that, you can force RapaGUI to always give
you a full-blown treeview by setting the Treeview.ForceMode attribute to the according
tag. See Section 54.12 [Treeview.ForceMode], page 268, for details.

54.2 Treeview.AbortEditing

NAME
Treeview.AbortEditing – get notified when user cancels editing (V1.1)

FUNCTION
When setting up a notification on this attribute, RapaGUI will run your event callback
whenever the user cancels an editing operation on an item, for example by pressing the
escape key or clicking outside the item edit widget.

Note that you have to set Treeviewcolumn.Editable to True if leaves in the
respective column shall be editable. To make nodes editable you have to set
Treeview.EditableNodes to True.

Chapter 54: Treeview class 265

Your event handler will be called with the following extra arguments:

Item: ID of the node or leaf that the user was editing when he cancelled the
operation.

Column: Column index of the item the user was editing when he cancelled the oper-
ation. For nodes this is always 0.

See Section 3.7 [Notifications], page 13, for details.

TYPE
Boolean

APPLICABILITY
N

54.3 Treeview.Active

NAME
Treeview.Active – set/get active tree item

FUNCTION
Set this attribute to activate the specified tree item. You have to pass the id of the entry
to be made active to this attribute. IDs are either assigned during object creation in
XML code or when calling Treeview.InsertNode or Treeview.InsertLeaf.

To deselect the active entry, just pass the special value Off. When getting this attribute,
it returns the id of the active tree item and Off in case there is no active entry.

You can also set up a notification on Treeview.Active to get informed whenever the
selection changes. The active tree item’s id will be returned as the TriggerValue then.

TYPE
String

APPLICABILITY
SGN

54.4 Treeview.Alternate

NAME
Treeview.Alternate – use alternating row colors

FUNCTION
Set this attribute to True to make the treeview appear with alternating row colors.

Note that on AmigaOS and compatibles, this feature requires at least MUI 5.0.

TYPE
Boolean

APPLICABILITY
I

266 RapaGUI manual

54.5 Treeview.Clear

NAME
Treeview.Clear – clear treeview (V2.0)

SYNOPSIS
moai.DoMethod(id, "Clear")

FUNCTION
Remove all entries from treeview.

INPUTS

id id of the treeview object

54.6 Treeview.ClickColumn

NAME
Treeview.ClickColumn – learn about column clicks (V2.0)

FUNCTION
In multi-column treeviews, this attribute records the number of the column where the
user last clicked.

TYPE
Number

APPLICABILITY
GN

54.7 Treeview.Close

NAME
Treeview.Close – close tree node

SYNOPSIS
moai.DoMethod(id, "Close", node$)

FUNCTION
Closes the specified treeview node and all its children.

You can pass the following special values for node$:

Root The root node. Passing this special value will close all nodes.

Active The active node.

INPUTS

id id of the treeview object

node$ id of tree node to use or special value (see above)

Chapter 54: Treeview class 267

54.8 Treeview.DoubleClick

NAME
Treeview.DoubleClick – get notified about double clicks on treeview items

FUNCTION
You can setup a notification on this attribute to learn about double clicks on treeview
items. The treeview item that the user double-clicked will be passed in TriggerValue.

TYPE
Boolean

APPLICABILITY
N

54.9 Treeview.DropFile

NAME
Treeview.DropFile – learn about dropped files (V1.1)

FUNCTION
When setting up a notification on this attribute, RapaGUI will run your event call-
back whenever one or more files have been dropped onto the treeview widget. The
TriggerValue field of the message table will be set to a table that contains a list of all
files that have been dropped onto the widget.

Additionally, the message table will contain the following two extra fields:

X: The x-position where the user has dropped the file(s). This will be relative
to the widget’s left corner.

Y: The y-position where the user has dropped the file(s). This will be relative
to the widget’s top corner.

See Section 3.7 [Notifications], page 13, for details.

Note that Treeview.DropFile is only ever triggered if Treeview.DropTarget has been
set to True first.

TYPE
Boolean

APPLICABILITY
N

54.10 Treeview.DropTarget

NAME
Treeview.DropTarget – configure drop target settings (V1.1)

FUNCTION
Set this to True if files can be dropped on this treeview widget. You can listen to the
Treeview.DropFile attribute to learn when the user drops one or more files on the
treeview widget.

268 RapaGUI manual

TYPE
Boolean

APPLICABILITY
ISG

54.11 Treeview.EditableNodes

NAME
Treeview.EditableNodes – allow editing of treeview nodes

FUNCTION
Set this to True to allow user editing of treeview nodes. The user will then be able to
edit all nodes in the tree by executing a slow double click, i.e. slowly pressing left mouse
button two times in a row.

If you would only like to allow editing of some nodes in the tree, you need to set this
attribute to True and you need to listen to the Treeview.StartEditing attribute.
Treeview.StartEditing will then be triggered whenever the user attempts to edit
a node and your callback can return False to forbid editing of certain items. See
Section 54.19 [Treeview.StartEditing], page 274, for details.

To get notified whenever the value of a treeview node changes because the user has edited
it, you have to listen to the Treeview.ValueChange attribute.

To manually start editing of a treeview node, call the Treeviewnode.Edit method.

Please note that this attribute only applies to treeview nodes. If you would like leaf
labels to be editable as well, you need to set the Treeviewcolumn.Editable attribute
to True.

Note that on AmigaOS and compatibles this feature is only available on MUI 4.0 or
higher.

TYPE
Boolean

APPLICABILITY
I

54.12 Treeview.ForceMode

NAME
Treeview.ForceMode – override default treeview mode

FUNCTION
RapaGUI can use two different widgets for Treeview class depending on your settings. For
example, in case a single-column treeview with no headings is used, RapaGUI might use
a different widget for reasons of efficiency in case the host OS provides such a widget. For
example, on Windows RapaGUI will use the Treeview control instead of a fully featured
Dataview in those cases. If you don’t want that, set this attribute to the desired widget
and RapaGUI will try to use it.

Chapter 54: Treeview class 269

The following modes are currently recognized:

Normal Automatically selects the widget that fits best. This is the default.

Treeview Use a Treeview widget. Treeview widgets only support single column trees
with no editable items and no checkboxes and no titles and no special dec-
orations.

Dataview Use a Dataview widget. Supports everything but currently uses a generic
implementation on Windows.

Note that on AmigaOS and compatibles this attribute doesn’t have any effect since
RapaGUI always uses the same widget on those platforms.

TYPE
String (see above for possible values)

APPLICABILITY
I

54.13 Treeview.GetEntry

NAME
Treeview.GetEntry – get information about tree entry

SYNOPSIS
found, table = moai.DoMethod(id, "GetEntry", item, position)

FUNCTION
Get information about a tree entry. The tree entry can be specified either as an absolute
index or also in relation to a specified node or leaf. This allows you to traverse the entire
tree. See below for an example.

item specifies the tree item to use as a reference point. This can be a node or a leaf.
Note that in contrast to all other methods or attributes of Treeview class, item must
not be a string identifier but a special value returned by this method in the UID table
field (see below) or obtained by querying Treeviewleaf.UID or Treeviewnode.UID for
an item. Alternatively, it can be one of the following special values:

Root Use the root node.

Active Use the active item.

position can either be a number or a special value. Passing a number is only supported
when the specified item is a node. In that case, the number indicates the index of the
child you want to get information about, starting from 0, i.e. passing 5 here would return
information about the sixth child of the node passed in item. Alternatively, you can pass
the following special values in position:

Head Return information about the first child of the node.

Tail Return information about the last child of the node.

Active Return information about the active item.

270 RapaGUI manual

Next Return the next entry in the tree after item.

Previous Return the previous entry in the tree before item.

Parent Return information about the parent of item.

This method returns two values: The first return value is a boolean flag which indicates
whether or not an item was found. If the first return value is True, the second return
value is a table with the following fields initialized:

Items This is a table containing the items for all columns of this treeview entry.
Note that if the entry is a node, this table will only contain one item because
nodes cannot span multiple columns.

Node True if the found entry is a node, False if it is a leaf.

ID String object identifier of this tree item.

UID Internal ID of this tree item. This is the only id you are allowed to pass in
the node argument of this method. Passing standard string object identifiers
is not allowed by this method. You can use this value for subsequent calls
to Treeview.GetEntry in the node argument See above for more informa-
tion and below for an example. You can also obtain UIDs by getting the
Treeviewleaf.UID or Treeviewnode.UID attribute.

INPUTS

id id of the treeview object

item special identifier returned by this method or a special value (see above)

position index of entry to get or a special value (see above)

RESULTS

found boolean flag indicating whether or not an entry was found

table table containing information about found entry

EXAMPLE
Function p_DumpListTree(id$, node, indent)

Local found, t = moai.DoMethod(id$, "GetEntry", node, "Head")

While found = True

If indent > 0

DebugPrint(RepeatStr(" ", indent) ..

IIf(t.Node = True, "+", ""), Unpack(t.items))

Else

DebugPrint(IIf(t.Node = True, "+", ""), Unpack(t.items))

EndIf

If t.Node = True Then p_DumpListTree(id$, t.uid, indent + 4)

found, t = moai.DoMethod(id$, "GetEntry", t.uid, "Next")

Wend

EndFunction

p_DumpListTree("mytreeview", "root", 0)

Chapter 54: Treeview class 271

The code above shows how to dump the complete contents of a treeview, preserving its
structure.

54.14 Treeview.HRules

NAME
Treeview.HRules – draw horizontal rules between rows

PLATFORMS
Windows, Linux, macOS

FUNCTION
Set this to True to enable horizontal rules between rows for the treeview.

TYPE
Boolean

APPLICABILITY
I

54.15 Treeview.InsertLeaf

NAME
Treeview.InsertLeaf – insert new tree leaf

SYNOPSIS
moai.DoMethod(id, "InsertLeaf", id$, node$, pred$, [icon1,] entry1$, ...)

FUNCTION
Inserts a new leaf into the treeview at the position which is defined by node$ and pred$.
A leaf is a treeview item that doesn’t have any children. id$ must be a unique string
identifier that you want to use to refer to the newly inserted treeview leaf.

The entry data for the new leaf has to be passed in the last parameters. If the tree-
view has multiple columns, you need to pass individual entry data for all the columns
in the treeview. The entry data consists of a text string and, if the column has the
Treeviewcolumn.Icon attribute set, an icon for each column. The icon has to be passed
before the text string and it has to be an identifier of a Hollywood brush/icon which
should be used as the icon for the entry. If Treeviewcolumn.Icon isn’t set, then you
must omit the icon parameter and only pass text data for the treeview entry. If you’ve
set Treeviewcolumn.Icon to True and you don’t want to show an icon in this particular
row and column, you can also pass the special value -1. In that case, RapaGUI won’t
show an icon even though Treeviewcolumn.Icon has been set to True. Please note that
auto-generated IDs cannot be used. Please also read about RapaGUI’s image cache to
learn more about icon support in RapaGUI. See Section 3.20 [Image cache], page 30, for
details.

In case a column is showing a checkbox, you have to pass "On", "True", or "1" to select
the checkbox and any other text to deselect the checkbox.

272 RapaGUI manual

In node$ you have to pass the node whose list is used to insert the new leaf. This can
be the string identifier of a node or one of the following special values:

Root The root node.

In pred$ you have to specify the node or leaf which will become the predecessor of the
leaf to insert, i.e. the new leaf will be inserted after the item specified in pred$. This
can be the string identifier of a node or a leaf or one of the following special values:

Head Insert as the first node child.

Tail Insert as the last node child.

Active Insert after the active item. If there is no active entry, the item will be
inserted as the last node child.

Note that on AmigaOS and compatibles icon support is only available with MUI 4.0 or
better.

INPUTS

id id of the treeview object

id$ unique string identifier for new treeview leaf

node$ id of node to insert into or special value (see above)

pred$ id of the predecessor node or leaf or special value (see above)

icon1 optional: icon for entry in the first column; this must only be passed if the
column has the icon attribute set; note that this must be a numeric identifier
and auto-generated IDs are not valid in this case

entry1$ entry to insert into the first column

... more entries if treeview has multiple columns

54.16 Treeview.InsertNode

NAME
Treeview.InsertNode – insert new tree node

SYNOPSIS
moai.DoMethod(id, "InsertNode", id$, node$, pred$, entry$[, icon])

FUNCTION
Inserts a new node into the treeview at the position which is defined by node$ and pred$.
A node is a treeview item that can have children and that can be opened by the user.
id$ must be a unique string identifier that you want to use to refer to the newly inserted
treeview node.

entry$ specifies the desired label for the new node. Optionally, you can also pass the id
of a Hollywood brush/icon in the optional icon argument if you want to have an icon
shown next to the node label. Note that node icons are always supported. You don’t
have to set Treeviewcolumn.Icon to True in order to show icons next to node labels.
Treeviewcolumn.Icon only applies to leaves, nodes always support icons. Please note

Chapter 54: Treeview class 273

that auto-generated IDs cannot be used. Please also read about RapaGUI’s image cache
to learn more about icon support in RapaGUI. See Section 3.20 [Image cache], page 30,
for details.

In node$ you have to pass the node whose list is used to insert the new node. This can
be the string identifier of a node or one of the following special values:

Root The root node.

In pred$ you have to specify the node or leaf which will become the predecessor of the
node to insert, i.e. the new node will be inserted after the item specified in pred$. This
can be the string identifier of a node or a leaf or one of the following special values:

Head Insert as the first node child.

Tail Insert as the last node child.

Active Insert after the active item. If there is no active entry, the item will be
inserted as the last node child.

Note that on AmigaOS and compatibles icon support is only available with MUI 4.0 or
better.

INPUTS

id id of the treeview object

id$ unique string identifier for new treeview node

node$ id of node to insert into or special value (see above)

pred$ id of predecessor node or leaf or special value (see above)

entry$ desired node label

icon optional: desired node icon (defaults to -1 which means no icon); note that
this must be a numeric identifier and auto-generated IDs are not valid in
this case

54.17 Treeview.Open

NAME
Treeview.Open – open tree node

SYNOPSIS
moai.DoMethod(id, "Open", node$[, all])

FUNCTION
Opens the specified treeview node. If the optional argument all is set to True, all
children of the specified node will be opened as well.

You can pass the following special values for node$:

Root The root node. Since the root node is never visible, this will automatically
open all children of the invisible root node.

Active The active node.

274 RapaGUI manual

INPUTS

id id of the treeview object

node$ id of tree node to use or special value (see above)

all optional: True to open all node children too (defaults to False)

54.18 Treeview.Remove

NAME
Treeview.Remove – remove tree item

SYNOPSIS
moai.DoMethod(id, "Remove", item$)

FUNCTION
Removes an item from a treeview (either a leaf or a complete node). You have to pass the
id of the entry to remove in item$. Alternatively, you can also pass one of the following
special values in item$:

Active Removes the active item.

Root Removes all items in the treeview. This does the same as calling the
Treeview.Clear method. (V2.0)

INPUTS

id id of the treeview object

item$ id of the tree item to remove or special value (see above)

54.19 Treeview.StartEditing

NAME
Treeview.StartEditing – get notified about item editing

FUNCTION
When setting up a notification on this attribute, RapaGUI will run your event callback
whenever the user wants to edit a treeview item by slowly double-clicking on it or when-
ever your script runs the Treeviewleaf.Edit or Treeviewnode.Edit method. Your
callback can then permit or forbid the user’s edit request. To forbid the request, your
callback has to return False. To permit the request, it has to return True.

Note that you have to set Treeviewcolumn.Editable to True if leaves in the
respective column shall be editable. To make nodes editable you have to set
Treeview.EditableNodes to True.

Your event handler will be called with the following extra arguments:

Item: ID of the node or leaf that the user wants to edit.

Column: Column index of the item which the user wants to edit. For nodes this is
always 0.

Chapter 54: Treeview class 275

See Section 3.7 [Notifications], page 13, for details.

TYPE
Boolean

APPLICABILITY
N

54.20 Treeview.ValueChange

NAME
Treeview.ValueChange – get notified when treeview item value changes

FUNCTION
When setting up a notification on this attribute, RapaGUI will run your event callback
whenever a treeview item’s value has changed because the user has toggled the check-
box or has edited the item. Note that Treeview.ValueChange will not trigger if the
item’s value was changed using the Treeviewleaf.SetItem or Treeviewleaf.SetState
methods. It also won’t trigger if Treeviewnode.Name was used to change the item’s
label.

For items in checkbox columns, TriggerValue will be set to either True or False,
reflecting the new checkbox state. For items in text columns, TriggerValue will contain
the new item text.

Additionally, your event handler will be called with the following extra arguments:

Item: ID of the item (node or leaf) whose value has changed.

Column: Column index of the item whose value has changed. For nodes this will
always be 0.

See Section 3.7 [Notifications], page 13, for details.

TYPE
Boolean or string (depending on column type)

APPLICABILITY
N

54.21 Treeview.VRules

NAME
Treeview.VRules – draw vertical rules between columns

FUNCTION
Set this to True to enable vertical rules between columns for the treeview.

TYPE
Boolean

APPLICABILITY
I

277

55 Treeviewcolumn class

55.1 Overview

Treeviewcolumn class is needed when creating treeviews. It allows you to specify different
attributes for the columns of your treeviews.

Treeviewcolumn class must always be embedded inside a <treeview> declaration. Its XML
tag is <column>. See Section 54.1 [Treeview class], page 263, for details.

Note that you cannot create instances of this class using moai.CreateObject(). Treeview
column numbers are currently static, i.e. you cannot add or remove columns at runtime.

55.2 Treeviewcolumn.Align

NAME
Treeviewcolumn.Align – set/get column alignment

FUNCTION
Set or get the column alignment. This can be one of the following values:

Left Left alignment. This is the default.

Right Right alignment.

Center Centered alignment.

On non-AmigaOS systems this attribute is only supported for the dataview backend.
When creating a treeview and Treeviewcolumn.Align is set to a value other than Left,
RapaGUI will automatically switch to the dataview backend. If you don’t specify this
attribute at creation time but want to set it later using moai.Set(), you have to explicitly
request a dataview widget by setting the Treeview.ForceMode attribute.

TYPE
String (see above for possible values)

APPLICABILITY
ISG

55.3 Treeviewcolumn.Checkbox

NAME
Treeviewcolumn.Checkbox – put column in checkbox mode

FUNCTION
Set this to True to mark this column as a checkbox column. Checkbox columns show
checkboxes instead of text. Whenever an item’s text in a checkbox column is set to
"On", "True", or "1", the checkbox will be selected. All other item texts will lead to an
unselected checkbox.

You can modify the states of the checkboxes by using the Treeviewleaf.SetState

method. Similarly, getting the state of a checkbox is possible via the
Treeviewleaf.GetState method.

278 RapaGUI manual

To get notified whenever the user toggles a checkbox state, you have to listen to the
Treeview.ValueChange attribute.

Also note that Treeviewcolumn.Checkbox and Treeviewcolumn.Editable and
Treeviewcolumn.Icon are mutually exclusive. You cannot create checkbox columns
that are editable or show icons.

Checkboxes in the first treeview column are currently unsupported on Windows, macOS,
and Linux.

TYPE
Boolean

APPLICABILITY
I

55.4 Treeviewcolumn.Editable

NAME
Treeviewcolumn.Editable – allow editing of column leaves

FUNCTION
Set this to True to allow user editing of the leaves in this column. The user will then be
able to edit all leaves in this column by executing a slow double click, i.e. slowly pressing
left mouse button two times in a row.

If you would only like to allow editing of some leaves in the column, you need to set
this attribute to True and you need to listen to the Treeview.StartEditing attribute.
Treeview.StartEditing will then be triggered whenever the user attempts to edit a leaf
and your callback can return False to forbid editing of certain items. See Section 54.19
[Treeview.StartEditing], page 274, for details.

To get notified whenever the value of a treeview leaf changes because the user has edited
it, you have to listen to the Treeview.ValueChange attribute.

To manually start editing of a treeview leaf, call the Treeviewleaf.Edit method.

Please note that this attribute only applies to treeview leaves. If you would like node
labels to be editable as well, you need to set the Treeview.EditableNodes attribute to
True.

Also, Treeviewcolumn.Checkbox and Treeviewcolumn.Editable are mutually exclu-
sive. You cannot create editable checkbox columns.

Note that on AmigaOS and compatibles this feature is only available on MUI 4.0 or
higher.

TYPE
Boolean

APPLICABILITY
I

Chapter 55: Treeviewcolumn class 279

55.5 Treeviewcolumn.Hide

NAME
Treeviewcolumn.Hide – show/hide treeview column

FUNCTION
This attribute allows you to show or hide single treeview columns. Note that the columns
will still be there, they’ll just be invisible. Thus, you must not forget hidden columns
when adding treeview leaves using Treeview.InsertLeaf.

On non-AmigaOS systems this attribute is only supported for the dataview backend.
When creating a treeview and Treeviewcolumn.Hide is set to True, RapaGUI will au-
tomatically switch to the dataview backend. If you don’t specify this attribute at creation
time but want to set it later using moai.Set(), you have to explicitly request a dataview
widget by setting the Treeview.ForceMode attribute.

TYPE
Boolean

APPLICABILITY
ISG

55.6 Treeviewcolumn.Icon

NAME
Treeviewcolumn.Icon – enable leaf icons for this column

FUNCTION
Set this to True if treeview leaves in this column use icons. In that case, you have to
pass Hollywood brushes/icons to use as icons to the Treeview.InsertLeaf method.

Note that this attribute only applies to treeview leaves. Treeview nodes can use icons
without setting any specific attribute. Icons for treeview nodes are always available, but
for leaves you have to set this attribute to True first.

Note that RapaGUI might scale the image to fit to the current monitor’s DPI setting.
Please read the chapter on high-DPI support for more information. See Section 3.12
[High-DPI support], page 20, for details.

Please also read about RapaGUI’s image cache to learn more about icon support in
RapaGUI. See Section 3.20 [Image cache], page 30, for details.

On AmigaOS and compatibles icon support is only available with MUI 4.0 or better.

TYPE
Boolean

APPLICABILITY
I

280 RapaGUI manual

55.7 Treeviewcolumn.IconScale

NAME
Treeviewcolumn.IconScale – configure automatic image scaling (V2.0)

FUNCTION
If Treeviewcolumn.Icon has been set to a raster brush and RapaGUI is running on a
high-DPI display, RapaGUI will automatically scale the brush’s raster graphics to fit to
the current monitor’s DPI setting. If you don’t want that, set this tag to False.

Alternatively, you can also globally disable automatic image scaling by setting the
ScaleGUI tag to False when calling @REQUIRE on RapaGUI. See Section 3.4 [Initial-
izing RapaGUI], page 11, for details.

Please also read the chapter about high-DPI support in RapaGUI to learn more about
supporting high-DPI displays. See Section 3.12 [High-DPI support], page 20, for details.

TYPE
Boolean

APPLICABILITY
I

55.8 Treeviewcolumn.IconType

NAME
Treeviewcolumn.IconType – set icon type to use (V2.0)

FUNCTION
This attribute allows you to set the type of the Hollywood image object passed in the
Treeviewcolumn.Icon attribute. By default, Treeviewcolumn.Icon expects a Holly-
wood brush. By setting Treeviewcolumn.IconType, however, you can make it use a
different Hollywood image type.

The following image types are currently available:

Brush Use a Hollywood brush. This is the default type. You can use either raster
or vector brushes. Vector brushes have the advantage that they can be
scaled to any resolution without losses in quality. This is very useful when
designing applications that should be compatible with high-DPI monitors.
See Section 3.12 [High-DPI support], page 20, for details.

Icon Use a Hollywood icon. This image type has the advantage that it can contain
several subimages of different sizes. This makes it possible to provide images
in different resolutions which can be very useful when designing applications
that should be compatible with high-DPI monitors. See Section 3.12 [High-
DPI support], page 20, for details.

Note that you can globally change the default of all IconType attributes to Holly-
wood icons by setting the Application.UseIcons tag. See Section 9.13 [Applica-
tion.UseIcons], page 65, for details.

TYPE
String (see above for possible values)

Chapter 55: Treeviewcolumn class 281

APPLICABILITY
I

55.9 Treeviewcolumn.Title

NAME
Treeviewcolumn.Title – set/get column title

FUNCTION
Set or get the title for the column. The title is always shown at the top of the treeview
and doesn’t go away when the treeview is scrolled.

TYPE
String

APPLICABILITY
ISG

55.10 Treeviewcolumn.Width

NAME
Treeviewcolumn.Width – set/get column width

FUNCTION
Set or get the column width in device-independent pixels. This defaults to -1 which
means that the column should be made as large as its largest entry.

TYPE
Number

APPLICABILITY
ISG

283

56 Treeviewleaf class

56.1 Overview

Treeviewleaf class is needed when creating treeviews. It allows you to define the single
leaves of the treeview and set different attributes for them. Each leaf of your treeview has
to contain an entry for every column of your treeview. Thus, your <leaf> declarations must
include as many <item> declarations as there are columns in your treeview. See Section 57.1
[Treeviewleafitem class], page 289, for details.

Treeviewleaf class must always be embedded inside a <treeview> declaration. See
Section 54.1 [Treeview class], page 263, for details.

Note that you cannot create instances of this class using moai.CreateObject(). Instead,
you have to use Treeview.InsertLeaf to create leaves at runtime.

56.2 Treeviewleaf.Edit

NAME
Treeviewleaf.Edit – prompt user to edit a leaf item

SYNOPSIS
moai.DoMethod(id, "Edit", column)

FUNCTION
This method can be used to programmatically initiate leaf item editing. Normally, item
editing is started by the user by slowly double-clicking an item. This method provides
an alternative to this user mechanism.

This will only work if Treeviewcolumn.Editable has been set to True for the respective
treeview column.

When the user has finished editing, the Treeview.ValueChange attribute will be trig-
gered.

Note that if you have installed a listener on the Treeview.StartEditing attribute, then
this callback will be asked for permission first before editing is actually started.

To learn about editing operations getting cancelled, you can listen to the
Treeview.AbortEditing attribute.

Also note that on AmigaOS and compatibles this feature is only available on MUI 4.0
or higher.

INPUTS

id id of the leaf

column column index of the leaf item to edit

284 RapaGUI manual

56.3 Treeviewleaf.GetDisabled

NAME
Treeviewleaf.GetDisabled – get checkbox disabled state

SYNOPSIS
state = moai.DoMethod(id, "GetDisabled", column)

FUNCTION
Returns the disabled state of the checkbox in the specified column. This is either True
or False.

INPUTS

id id of the leaf

column column index of the checkbox

RESULTS

state True if the checkbox is disabled, False otherwise

56.4 Treeviewleaf.GetIcon

NAME
Treeviewleaf.GetIcon – get leaf item icon

SYNOPSIS
br = moai.DoMethod(id, "GetIcon", column)

FUNCTION
Returns the Hollywood brush/icon id of the leaf icon used in the specified column. If
the specified item doesn’t have an icon, -1 is returned.

INPUTS

id id of the leaf

column column index of the item

RESULTS

br id of a Hollywood brush/icon or -1 if there is no icon

56.5 Treeviewleaf.GetItem

NAME
Treeviewleaf.GetItem – get leaf item label

SYNOPSIS
t$ = moai.DoMethod(id, "GetItem", column)

FUNCTION
Returns the label text of the item in the specified leaf column.

Chapter 56: Treeviewleaf class 285

INPUTS

id id of the leaf

column column index of the item

RESULTS

t$ label of the specified item

56.6 Treeviewleaf.GetState

NAME
Treeviewleaf.GetState – get checkbox toggle state

SYNOPSIS
state = moai.DoMethod(id, "GetState", column)

FUNCTION
Returns the toggle state of the checkbox in the specified column. This is either True if
the checkbox is selected or False otherwise.

INPUTS

id id of the leaf

column column index of the checkbox

RESULTS

state True if the checkbox is selected, False otherwise

56.7 Treeviewleaf.SetDisabled

NAME
Treeviewleaf.SetDisabled – set checkbox disabled state

SYNOPSIS
moai.DoMethod(id, "SetDisabled", column, state)

FUNCTION
Sets the disabled state of the checkbox in the specified column. Pass True to disable the
checkbox or False to enable it.

INPUTS

id id of the leaf

column column index of the checkbox

state True if the checkbox should be disabled, False otherwise

286 RapaGUI manual

56.8 Treeviewleaf.SetIcon

NAME
Treeviewleaf.SetIcon – set leaf item icon

SYNOPSIS
moai.DoMethod(id, "SetIcon", column, br)

FUNCTION
Adds an icon to the specified leaf item. You have to pass the id of a Hollywood brush/icon
which should be used as the icon in br. To remove an icon from a leaf item, pass -1 in
br.

Please also read about RapaGUI’s image cache to learn more about icon support in
RapaGUI. See Section 3.20 [Image cache], page 30, for details.

INPUTS

id id of the leaf

column column index of the leaf item

br identifier of a Hollywood brush/icon to use as an icon or -1 to remove the
item icon

56.9 Treeviewleaf.SetItem

NAME
Treeviewleaf.SetItem – set leaf item label

SYNOPSIS
moai.DoMethod(id, "SetItem", column, l$)

FUNCTION
Changes the label text of the specified leaf item to l$.

INPUTS

id id of the leaf

column column index of the leaf item

l$ desired new label text for the leaf item

56.10 Treeviewleaf.SetState

NAME
Treeviewleaf.SetState – set checkbox toggle state

SYNOPSIS
moai.DoMethod(id, "SetState", column, state)

FUNCTION
Sets the toggle state of the checkbox in the specified column. Pass True to select the
checkbox or False to unselect it.

Chapter 56: Treeviewleaf class 287

INPUTS

id id of the leaf

column column index of the checkbox

state True if the checkbox should be selected, False otherwise

56.11 Treeviewleaf.UID

NAME
Treeviewleaf.UID – get leaf UID

FUNCTION
Gets the UID of the specified tree leaf. This UID is needed when running the
Treeview.GetEntry method.

TYPE
MOAI object

APPLICABILITY
G

289

57 Treeviewleafitem class

57.1 Overview

Treeviewleafitem class is needed when creating treeviews. It allows you to define the individ-
ual items for each column of a treeview leaf. You have to use as many <item> declarations
as there are columns in your treeview. Since this class is a subclass of Treeviewleaf class,
your <item> declarations have to be embedded inside the <leaf> tag. Leaf items can have
a label and optionally an icon. See Section 54.1 [Treeview class], page 263, for an example.

Note that you cannot create instances of this class using moai.CreateObject(). Instead,
you have to use Treeview.InsertLeaf to create leaf items at runtime.

57.2 Treeviewleafitem.Icon

NAME
Treeviewleafitem.Icon – set item image

FUNCTION
Set this attribute to the identifier of a Hollywood brush or icon to add an image to
your treeview leaf item. Whether this attribute expects a Hollywood brush or icon,
depends on what you specify in the Treeviewcolumn.IconType attribute. By default,
Treeviewleafitem.Icon expects a Hollywood brush.

Note that RapaGUI might scale the image to fit to the current monitor’s DPI setting.
Please read the chapter on high-DPI support for more information. See Section 3.12
[High-DPI support], page 20, for details.

Please also read about RapaGUI’s image cache to learn more about icon support in
RapaGUI. See Section 3.20 [Image cache], page 30, for details.

TYPE
Number

APPLICABILITY
I

291

58 Treeviewnode class

58.1 Overview

Treeviewnode class is needed when creating treeviews. It allows you to define the single
nodes of the treeview and set different attributes for them. Note that in contrast to treeview
leaves, nodes only contain a single entry, even for multi-column treeviews.

Treeviewnode class must always be embedded inside a <treeview> declaration. See
Section 54.1 [Treeview class], page 263, for details.

Note that you cannot create instances of this class using moai.CreateObject(). Instead,
you have to use Treeview.InsertNode to create nodes at runtime.

58.2 Treeviewnode.Edit

NAME
Treeviewnode.Edit – prompt user to edit a node label

SYNOPSIS
moai.DoMethod(id, "Edit")

FUNCTION
This method can be used to programmatically initiate node label editing. Normally,
node label editing is started by the user by slowly double-clicking an item. This method
provides an alternative to this user mechanism.

This will only work if Treeview.EditableNodes has been set to True in the treeview.

When the user has finished editing, the Treeview.ValueChange attribute will be trig-
gered.

Note that if you have installed a listener on the Treeview.StartEditing attribute, then
this callback will be asked for permission first before editing is actually started.

To learn about editing operations getting cancelled, you can listen to the
Treeview.AbortEditing attribute.

Also note that on AmigaOS and compatibles this feature is only available on MUI 4.0
or higher.

INPUTS

id id of the node

58.3 Treeviewnode.Icon

NAME
Treeviewnode.Icon – set node image

FUNCTION
Set this attribute to the identifier of a Hollywood brush or icon to add an image to
your treeview node. Whether this attribute expects a Hollywood brush or icon, de-
pends on what you specify in the Treeviewcolumn.IconType attribute. By default,

292 RapaGUI manual

Treeviewnode.Icon expects a Hollywood brush. To remove the icon from a tree node,
set this attribute to -1.

Note that RapaGUI might scale the image to fit to the current monitor’s DPI setting.
Please read the chapter on high-DPI support for more information. See Section 3.12
[High-DPI support], page 20, for details.

Please also read about RapaGUI’s image cache to learn more about icon support in
RapaGUI. See Section 3.20 [Image cache], page 30, for details.

TYPE
Number

APPLICABILITY
ISG

58.4 Treeviewnode.Name

NAME
Treeviewnode.Name – set/get node name

FUNCTION
Sets or gets the string that is used as the node name.

When creating a new node, this attribute is mandatory and must always be set.

TYPE
String

APPLICABILITY
ISG

58.5 Treeviewnode.UID

NAME
Treeviewnode.UID – get node UID

FUNCTION
Gets the UID of the specified tree node. This UID is needed when running the
Treeview.GetEntry method.

TYPE
MOAI object

APPLICABILITY
G

293

59 VLine class

59.1 Overview

VLine class derives from Area class and creates a vertical divider line which can be used
separate groups of widgets. There is also HLine class which creates horizontal divider lines.
See Section 19.1 [HLine class], page 119, for details.

VLine class doesn’t define any attributes.

295

60 VSpace class

60.1 Overview

VSpace class simply creates objects of a fixed device-independent pixel size. This is typically
used to fine-tune the GUI layout. To create padding objects that are freely resizable, you
can use Rectangle class instead. See Section 41.1 [Rectangle class], page 209, for details.

60.2 VSpace.Height

NAME
VSpace.Height – set vertical space

FUNCTION
Sets the desired vertical space for this object in device-independent pixels.

TYPE
Number

APPLICABILITY
I

297

61 VSplitter class

61.1 Overview

VSplitter class is a special variant of Group class. It creates a vertical group of two children
with a sash between them that allows the user to individually adjust the sizes of the group’s
two children by dragging the sash.

Note that VSplitter groups must always contain exactly two children. Additionally, the
children must also be sizable because VSplitter class allows its children to be resized. Here
is an example XML excerpt for creating a vertical splitter layout with two textviews:

<vsplitter>

<textview>One</textview>

<textview>Two</textview>

</vsplitter>

VSplitter class is available since RapaGUI 2.0.

61.2 VSplitter.Border

NAME
VSplitter.Border – set sash border style (V2.0)

FUNCTION
Set this to False to make the sash use a different border style. Note that this is not
supported on all platforms.

TYPE
Boolean

APPLICABILITY
I

61.3 VSplitter.Gravity

NAME
VSplitter.Gravity – set/get sash gravity (V2.0)

FUNCTION
Set or get the sash gravity. Gravity is a value between 0 and 100 which controls the
position of the sash while resizing the splitter group. The gravity value tells splitter
group how much the top child will grow while resizing. For example:

− 0: Only the bottom child is automatically resized.

− 50: Both children grow by equal size.

− 100: Only the top child grows.

The default sash gravity is 0.

TYPE
Number

298 RapaGUI manual

APPLICABILITY
SG

61.4 VSplitter.MinPaneSize

NAME
VSplitter.MinPaneSize – set/get minimum pane size (V2.0)

FUNCTION
Set or get the minimum pane size. The default minimum pane size is 0, which means
that either pane can be reduced to zero by dragging the sash, thus removing one of the
panes. To prevent this behaviour (and veto out-of-range sash dragging), set a minimum
size, for example 20.

This value is in device-independent pixels.

TYPE
Number

APPLICABILITY
ISG

61.5 VSplitter.Position

NAME
VSplitter.Position – set/get sash position (V2.0)

FUNCTION
Set or get the position of the sash dividing the group’s children. This value is in device-
independent pixels.

TYPE
Number

APPLICABILITY
SG

61.6 VSplitter.Split

NAME
VSplitter.Split – split the panes (V2.0)

SYNOPSIS
moai.DoMethod(id, "Split", pos)

FUNCTION
This splits the group into two panes. The pos argument specifies the position of the sash
in device-independent pixels. If this value is positive, it specifies the size of the top pane.
If it is negative, its absolute value gives the size of the bottom pane. Finally, specify 0
to choose the default position (half of the total window height).

Chapter 61: VSplitter class 299

INPUTS

id id of the splitter object

pos desired sash position

61.7 VSplitter.Unsplit

NAME
VSplitter.Unsplit – unsplit the panes (V2.0)

SYNOPSIS
moai.DoMethod(id, "Unsplit", idx)

FUNCTION
This unsplits the panes and hides the pane specified in idx. If idx is 0, the top pane
will be hidden, if it is 1, the bottom pane will be hidden. To make both panes visible
again, use the VSplitter.Split method.

INPUTS

id id of the splitter object

idx index of pane to remove

301

62 Window class

62.1 Overview

Window class creates top-level windows that can be filled with groups of widgets. These
groups are children of the top-level windows. As such, groups are automatically relayouted
whenever the size of their parent changes. This allows you to create flexible GUI layouts
that automatically adapt to the available screen space. Additionally, you can also attach
menubars and toolbars to a window.

Windows are children of Application class. When creating window objects dynamically, you
first have to add them to the application object by calling Application.AddWindow.

If you need to open dialogs, you can do so by creating objects of Dialog class. Dialogs
are special top-level windows which block the rest of the application until they are closed.
Dialogs are typically used when user action is required to continue a task or to indicate that
the application is currently busy. A dialog could show a progress bar then, for example.
See Section 16.1 [Dialog class], page 95, for details.

Here is a minimal example of creating a window in XML:

<window title="Hello World!">

<vgroup>

<button id="btn">Hello World!</button>

</vgroup>

</window>

Note that the root element of a window always needs to be a single group object, i.e.
an instance of Group class. See Section 18.1 [Group class], page 105, for details. In our
example, we use a <vgroup> as the root element. It is not allowed to have multiple elements
at the window’s root level. You must only use a single group object as the root element.

Windows that are declared in XML code that is parsed by moai.CreateApp() are opened
automatically unless you explicitly request them to stay closed by setting Window.Open to
False. Windows created by moai.CreateObject(), on the other hand, are not opened
automatically. You first have to add them to the application’s window list by calling
Application.AddWindow and then set Window.Open to True.

62.2 Window.Accelerator

NAME
Window.Accelerator – set window’s accelerator table

FUNCTION
Set the accelerator table for this window. See Section 7.1 [Accelerator class], page 57,
for details.

TYPE
MOAI object

APPLICABILITY
I

302 RapaGUI manual

62.3 Window.Activate

NAME
Window.Activate – change activation state of window

FUNCTION
Set this attribute to True to activate the window.

You can also set up a notification on this attribute to learn whenever the window is
activated or deactivated.

TYPE
Boolean

APPLICABILITY
ISGN

62.4 Window.ActiveObject

NAME
Window.ActiveObject – set/get active widget

FUNCTION
Set or get the active widget. The active widget is the one that has the keyboard focus.
Widgets can also be activated manually by using the TAB key.

TYPE
MOAI object

APPLICABILITY
SG

62.5 Window.Borderless

NAME
Window.Borderless – make window borderless (V2.0)

PLATFORMS
Amiga, Android

FUNCTION
Set this to True to create a window without a frame.

TYPE
Boolean

APPLICABILITY
I

Chapter 62: Window class 303

62.6 Window.CloseGadget

NAME
Window.CloseGadget – configure window’s close gadget

FUNCTION
Set this to False to create a window without a close gadget.

TYPE
Boolean

APPLICABILITY
I

62.7 Window.CloseRequest

NAME
Window.CloseRequest – handle close request of window

FUNCTION
If you set up a notification on this attribute, the window won’t be closed automatically
when the user presses the window’s close gadget. Instead, your event handler will be
called and you have to close the window manually by setting Window.Open to False. Or
you may choose to keep the window open if there are things that have to be finished
first.

A typical use case for this attribute is to ask the user whether he wants to save the
current project before terminating the application.

If there is no notification on this attribute, windows will be closed automatically when
the close gadget is pressed.

TYPE
Boolean

APPLICABILITY
N

62.8 Window.DefaultObject

NAME
Window.DefaultObject – set/get window’s default widget

FUNCTION
The default widget is the one that is active when a window is opened. Typically, this
could be an "OK" or another confirmation button so that the user can just hit RETURN
to close the window.

TYPE
MOAI object

304 RapaGUI manual

APPLICABILITY
ISG

62.9 Window.DragBar

NAME
Window.DragBar – configure window’s drag bar

FUNCTION
Set this to False if you do not want your window to be draggable.

TYPE
Boolean

APPLICABILITY
I

62.10 Window.Height

NAME
Window.Height – set/get window height

FUNCTION
Set the window height in device-independent pixels. This can either be an absolute pixel
value or one of the following special values:

Default Calculate height from the default sizes of all widgets.

Screen:<1..100>

Set height as a percentage of the host screen’s total height.

Default for this tag is Default.

TYPE
Number or predefined macro

APPLICABILITY
IG

62.11 Window.HideFromTaskbar

NAME
Window.HideFromTaskbar – configure taskbar visibility

PLATFORMS
Windows, Linux

FUNCTION
Set this to True if your window shouldn’t appear in the taskbar.

Chapter 62: Window class 305

TYPE
Boolean

APPLICABILITY
I

62.12 Window.Left

NAME
Window.Left – set/get left edge of window

FUNCTION
Set the horizontal position of the window. You can pass an absolute value in device-
independent pixels here or use one of the following macros:

Centered Center window in the visible area of screen.

Moused Open window under the mouse cursor.

Default for this tag is Centered.

TYPE
Number or predefined macro

APPLICABILITY
IG

62.13 Window.Margin

NAME
Window.Margin – set window margin

FUNCTION
Sets the window margin in device-independent pixels. The window margin is defined as
the space between the window’s frame and the root group.

TYPE
Number

APPLICABILITY
I

62.14 Window.MaximizeGadget

NAME
Window.MaximizeGadget – configure window’s maximize gadget

PLATFORMS
Windows, Linux, macOS

306 RapaGUI manual

FUNCTION
Set this to False if you don’t want to have a maximize gadget for your window. Defaults
to False if Window.Toolwindow is set, otherwise to True.

TYPE
Boolean

APPLICABILITY
I

62.15 Window.Menubar

NAME
Window.Menubar – set window’s menubar

FUNCTION
Set the menubar for this window. See Section 31.1 [Menubar class], page 175, for details.

TYPE
MOAI object

APPLICABILITY
I

62.16 Window.MinimizeGadget

NAME
Window.MinimizeGadget – configure window’s minimize gadget

PLATFORMS
Windows, Linux, macOS

FUNCTION
Set this to False if you don’t want to have a minimize gadget for your window. Defaults
to False if Window.Toolwindow is set, otherwise to True.

TYPE
Boolean

APPLICABILITY
I

62.17 Window.NoCyclerMenu

NAME
Window.NoCyclerMenu – do not add a window cycler menu (V2.0)

PLATFORMS
Android

Chapter 62: Window class 307

FUNCTION
By default, RapaGUI on Android will allow you to switch between individual windows
using the menu. If you don’t want that, set this attribute to True. In that case, RapaGUI
won’t add a cycler menu to the application’s menu. Note that the cycler menu will of
course only be added when multiple windows are open.

TYPE
Boolean

APPLICABILITY
I

62.18 Window.Open

NAME
Window.Open – open/close a window

FUNCTION
Set this attribute to open and close your windows.

Note that windows that are declared in XML code that is parsed by moai.CreateApp()

are opened automatically unless you explicitly request them to stay closed by setting
Window.Open to False. Windows created by moai.CreateObject(), on the other hand,
are not opened automatically. You first have to add them to the application’s window
list by calling Application.AddWindow and then set Window.Open to True.

TYPE
Boolean

APPLICABILITY
ISG

62.19 Window.Orientation

NAME
Window.Orientation – set/get window orientation (V2.0)

PLATFORMS
Android

FUNCTION
Set or get the current window orientation. This can be one of the following special values:

Device Use the current device orientation. This is the default.

Landscape

Use landscape orientation.

Portrait Use portrait orientation.

You can also set up a notification on this attribute to learn when the user rotates the
device.

308 RapaGUI manual

TYPE
String (see above for possible values)

APPLICABILITY
ISGN

62.20 Window.Parent

NAME
Window.Parent – set window parent

PLATFORMS
Windows, Linux, macOS

FUNCTION
Set this to an identifier of a MOAI object that should become the parent of this window.
If a window has a parent, the window will automatically be hidden when the parent is
hidden and it will also be centered above the parent in case no explicit position has been
specified.

Note that you should use Dialog class if you want the parent window to be blocked while
the child is open. See Section 16.1 [Dialog class], page 95, for details.

TYPE
MOAI object

APPLICABILITY
I

62.21 Window.PubScreen

NAME
Window.PubScreen – set window’s screen

PLATFORMS
AmigaOS and compatibles

FUNCTION
This attribute allows you to specify the name of a public screen that the window should
open on. Please use this attribute only if really necessary because normally the user of
your application should be the one who decides on which screen he wants to run your
application using the MUI preferences.

TYPE
String

APPLICABILITY
ISG

Chapter 62: Window class 309

62.22 Window.Remember

NAME
Window.Remember – remember window position and size (V2.0)

FUNCTION
Set this attribute to True to if this window should remember its position and size when
the program is restarted (or when dialogs are destroyed and re-created).

Note that this is only possible for windows/dialogs that have an ID. The ID is used to
memorize the window’s position and size in order to restore it later so keep in mind that
if you change the window’s ID, its position and size settings will get lost (or they will
be transferred to another window in case you re-use an ID previously used for a certain
window for a new window)

Also note that this attribute defaults to True on Amiga systems because the standard
MUI behaviour is to always remember positions. On all other systems it defaults to
False.

TYPE
Boolean

APPLICABILITY
I

62.23 Window.ScreenTitle

NAME
Window.ScreenTitle – set/get screen title of window

PLATFORMS
AmigaOS and compatibles

FUNCTION
Set the text that is shown in the screen’s title bar when the window is active.

TYPE
String

APPLICABILITY
ISG

62.24 Window.SingleMenu

NAME
Window.SingleMenu – use a single menu (V2.0)

PLATFORMS
Android

310 RapaGUI manual

FUNCTION
If this attribute is set to True, only the first menu of the menu bar will be used and
its items will be shown directly when pressing the options button in the action bar. All
other menus that might be in the menu bar will be ignored.

TYPE
Boolean

APPLICABILITY
I

62.25 Window.SizeChange

NAME
Window.SizeChange – learn about size changes (V2.0)

FUNCTION
This attribute will trigger a notification whenever the user changes the window size.
Your event callback will receive two additional parameters named Width and Height

which will contain the new dimensions of the window.

TYPE
Boolean

APPLICABILITY
N

62.26 Window.SizeGadget

NAME
Window.SizeGadget – configure window’s size gadget

FUNCTION
Set this to False if you don’t want to have a size gadget for your window.

TYPE
Boolean

APPLICABILITY
I

62.27 Window.StayOnTop

NAME
Window.StayOnTop – open window which stays on top

PLATFORMS
Windows, Linux, macOS

Chapter 62: Window class 311

FUNCTION
Set this to True to make your window stay on top of the window Z-order.

TYPE
Boolean

APPLICABILITY
I

62.28 Window.Subtitle

NAME
Window.Subtitle – set/get window subtitle (V2.0)

PLATFORMS
Android

FUNCTION
Set the text that is shown as the action bar’s subtitle.

TYPE
String

APPLICABILITY
ISG

62.29 Window.Toolwindow

NAME
Window.Toolwindow – designate window as a tool window

PLATFORMS
Windows, Linux, macOS

FUNCTION
Set this to True to make your window open in the tool window design. Tool windows
usually have a smaller frame than normal top-level windows.

TYPE
Boolean

APPLICABILITY
I

62.30 Window.Top

NAME
Window.Top – set/get top edge of window

312 RapaGUI manual

FUNCTION
Set the vertical position of the window. You can pass an absolute value in device-
independent pixels here or use one of the following macros:

Centered Center window in the visible area of screen.

Moused Open window under the mouse cursor.

Delta:<p>

Open window <p> device-independent pixels below the screen’s title bar.

Default for this tag is Centered.

TYPE
Number or predefined macro

APPLICABILITY
IG

62.31 Window.UseBottomBorderScroller

NAME
Window.UseBottomBorderScroller – enable bottom border scrollbar

PLATFORMS
AmigaOS and compatibles only

FUNCTION
Set this to True to tell RapaGUI that there is a child in your window layout which puts
a scrollbar in the bottom window border, e.g. by using Scrollbar.UseWinBorder.

TYPE
Boolean

APPLICABILITY
I

62.32 Window.UseLeftBorderScroller

NAME
Window.UseLeftBorderScroller – enable left border scrollbar

PLATFORMS
AmigaOS and compatibles only

FUNCTION
Set this to True to tell RapaGUI that there is a child in your window layout which puts
a scrollbar in the left window border, e.g. by using Scrollbar.UseWinBorder.

TYPE
Boolean

APPLICABILITY
I

Chapter 62: Window class 313

62.33 Window.UseRightBorderScroller

NAME
Window.UseRightBorderScroller – enable right border scrollbar

PLATFORMS
AmigaOS and compatibles only

FUNCTION
Set this to True to tell RapaGUI that there is a child in your window layout which puts
a scrollbar in the right window border, e.g. by using Scrollbar.UseWinBorder.

TYPE
Boolean

APPLICABILITY
I

62.34 Window.Title

NAME
Window.Title – set/get title of window

FUNCTION
Set or get the window’s title.

If you do not set this attribute, RapaGUI will use the title specified in Hollywood’s
@APPTITLE preprocessor command. If @APPTITLE hasn’t been specified either, the default
title "RapaGUI" will be used.

TYPE
String

APPLICABILITY
ISG

62.35 Window.Width

NAME
Window.Width – set/get window width

FUNCTION
Set the window width in device-independent pixels. This can either be an absolute pixel
value or one of the following special values:

Default Calculate width from the default sizes of all widgets.

Screen:<1..100>

Set width as a percentage of the host screen’s total width.

Default for this tag is Default.

314 RapaGUI manual

TYPE
Number or predefined macro

APPLICABILITY
IG

315

Appendix A Licenses

A.1 wxWidgets license

wxWindows Library Licence, Version 3.1

Copyright (c) 1998-2005 Julian Smart, Robert Roebling et al

Everyone is permitted to copy and distribute verbatim copies of this licence document, but
changing it is not allowed.

WXWINDOWS LIBRARY LICENCE TERMS AND CONDITIONS FOR COPYING, DIS-
TRIBUTION AND MODIFICATION

This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Library General Public Licence as published by the Free Software Foundation; either
version 2 of the Licence, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Library General Public Licence for more details.

You should have received a copy of the GNU Library General Public Licence along with
this software, usually in a file named COPYING.LIB. If not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

EXCEPTION NOTICE

1. As a special exception, the copyright holders of this library give permission for additional
uses of the text contained in this release of the library as licenced under the wxWindows
Library Licence, applying either version 3.1 of the Licence, or (at your option) any later
version of the Licence as published by the copyright holders of version 3.1 of the Licence
document.

2. The exception is that you may use, copy, link, modify and distribute under your own
terms, binary object code versions of works based on the Library.

3. If you copy code from files distributed under the terms of the GNU General Public
Licence or the GNU Library General Public Licence into a copy of this library, as this
licence permits, the exception does not apply to the code that you add in this way. To avoid
misleading anyone as to the status of such modified files, you must delete this exception
notice from such code and/or adjust the licensing conditions notice accordingly.

4. If you write modifications of your own for this library, it is your choice whether to permit
this exception to apply to your modifications. If you do not wish that, you must delete the
exception notice from such code and/or adjust the licensing conditions notice accordingly.

A.2 MUI license

This application uses MUI - MagicUserInterface (c) Copyright 1992-97 by Stefan Stuntz.
MUI is a system to generate and maintain graphical user interfaces. With the aid of a
preferences program, the user of an application has the ability to customize the outfit
according to his personal taste.

MUI is distributed as shareware. To obtain a complete package containing lots of examples
and more information about registration please look for a file called "muiXXusr.lha" (XX
means the latest version number) on your local bulletin boards or on public domain disks.

316 RapaGUI manual

If you want to pageview directly, feel free to send DM 30.- or US$ 20.- to

Stefan Stuntz
Eduard-Spranger-Straße 7
80935 München
GERMANY

Support and online registration is available at http://www.sasg.com/

A.3 Expat license

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd and Clark Cooper

Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006 Expat maintainers.

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

A.4 LGPL license

GNU Lesser General Public License Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of the
GNU Library Public License, version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom
to share and change free software–to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software
packages–typically libraries–of the Free Software Foundation and other authors who decide
to use it. You can use it too, but we suggest you first think carefully about whether this
license or the ordinary General Public License is the better strategy to use in any particular
case, based on the explanations below.

http://www.sasg.com/

Appendix A: Licenses 317

When we speak of free software, we are referring to freedom of use, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish); that you receive source code or
can get it if you want it; that you can change the software and use pieces of it in new free
programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them with the library after
making changes to the library and recompiling it. And you must show them these terms so
they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or modify
the library.

To protect each distributor, we want to make it very clear that there is no warranty for the
free library. Also, if the library is modified by someone else and passed on, the recipients
should know that what they have is not the original version, so that the original author’s
reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We
wish to make sure that a company cannot effectively restrict the users of a free program by
obtaining a restrictive license from a patent holder. Therefore, we insist that any patent
license obtained for a version of the library must be consistent with the full freedom of use
specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License. This license, the GNU Lesser General Public License, applies to certain
designated libraries, and is quite different from the ordinary General Public License. We
use this license for certain libraries in order to permit linking those libraries into non-free
programs.

When a program is linked with a library, whether statically or using a shared library, the
combination of the two is legally speaking a combined work, a derivative of the original
library. The ordinary General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General Public License permits
more lax criteria for linking other code with the library.

We call this license the "Lesser" General Public License because it does Less to protect the
user’s freedom than the ordinary General Public License. It also provides other free software
developers Less of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many libraries. However, the
Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible
use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free
programs must be allowed to use the library. A more frequent case is that a free library

318 RapaGUI manual

does the same job as widely used non-free libraries. In this case, there is little to gain by
limiting the free library to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater
number of people to use a large body of free software. For example, permission to use the
GNU C Library in non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does
ensure that the user of a program that is linked with the Library has the freedom and the
wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that
uses the library". The former contains code derived from the library, whereas the latter
must be combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a
notice placed by the copyright holder or other authorized party saying it may be distributed
under the terms of this Lesser General Public License (also called "this License"). Each
licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and data)
to form executables.

The "Library", below, refers to any such software library or work which has been dis-
tributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or
a portion of it, either verbatim or with modifications and/or translated straightforwardly
into another language. (Hereinafter, translation is included without limitation in the term
"modification".)

"Source code" for a work means the preferred form of the work for making modifications to
it. For a library, complete source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running a program using the Library is not restricted,
and output from such a program is covered only if its contents constitute a work based on
the Library (independent of the use of the Library in a tool for writing it). Whether that is
true depends on what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

Appendix A: Licenses 319

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed
the files and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third parties
under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be supplied
by an application program that uses the facility, other than as an argument passed when
the facility is invoked, then you must make a good faith effort to ensure that, in the event an
application does not supply such function or table, the facility still operates, and performs
whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is en-
tirely well-defined independent of the application. Therefore, Subsection 2d requires that
any application-supplied function or table used by this function must be optional: if the
application does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Library, the distribution of the whole must
be on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public License,
version 2, instead of to this License. (If a newer version than version 2 of the ordinary
GNU General Public License has appeared, then you can specify that version instead if you
wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided that
you accompany it with the complete corresponding machine-readable source code, which

320 RapaGUI manual

must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled to
copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a "work that uses the
Library". Such a work, in isolation, is not a derivative work of the Library, and therefore
falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a "work that uses the library". The executable is therefore covered by this License. Section
6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is
not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors,
and small macros and small inline functions (ten lines or less in length), then the use of the
object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work that uses
the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit modifi-
cation of the work for the customer’s own use and reverse engineering for debugging such
modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference directing the user to
the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for
the Library including whatever changes were used in the work (which must be distributed
under Sections 1 and 2 above); and, if the work is an executable linked with the Library,
with the complete machine-readable "work that uses the Library", as object code and/or
source code, so that the user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood that the user who changes
the contents of definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

Appendix A: Licenses 321

b) Use a suitable shared library mechanism for linking with the Library. A suitable mech-
anism is one that (1) uses at run time a copy of the library already present on the user’s
computer system, rather than copying library functions into the executable, and (2) will
operate properly with a modified version of the library, if the user installs one, as long as
the modified version is interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at least three years, to give the same
user the materials specified in Subsection 6a, above, for a charge no more than the cost of
performing this distribution.

d) If distribution of the work is made by offering access to copy from a designated place,
offer equivalent access to copy the above specified materials from the same place.

e) Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the materials to be distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary
libraries that do not normally accompany the operating system. Such a contradiction means
you cannot use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and distribute
such a combined library, provided that the separate distribution of the work based on the
Library and of the other library facilities is otherwise permitted, and provided that you do
these two things:

a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms of
the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined form of
the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify, sublicense,
link with, or distribute the Library is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full
compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the Library), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing
or modifying the Library or works based on it.

322 RapaGUI manual

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or
modify the Library subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then
as a consequence you may not distribute the Library at all. For example, if a patent license
would not permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply, and the section as a whole is intended
to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version number,
you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribu-
tion conditions are incompatible with these, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

323

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LI-
BRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SER-
VICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

325

Index

A
Acceleratoritem.Mod . 59
Acceleratoritem.Pressed . 60
Application.AboutMUI . 61
Application.AboutRapaGUI . 61
Application.AddWindow . 61
Application.ContextMenu . 62
Application.HelpFile . 62
Application.Icon . 63
Application.OpenConfigWindow 63
Application.RemoveWindow . 64
Application.ShowHelp . 64
Application.ShowHelpNode . 65
Application.Sleep . 64
Application.UseIcons . 65
Application.WindowMenu . 66
Area.ContextMenu . 67
Area.Disabled . 68
Area.FixHeight . 68
Area.FixWidth . 68
Area.FontName . 69
Area.FontSize . 69
Area.FontStyle . 70
Area.Height . 70
Area.Hide . 71
Area.Left . 71
Area.NoAutoKey . 71
Area.Redraw . 72
Area.Tooltip . 72
Area.Top . 72
Area.Weight . 72
Area.Width . 73

B
Busybar.Move . 75
Busybar.Reset . 75
Button.Hint . 77
Button.Icon . 77
Button.IconPos . 78
Button.IconScale . 78
Button.IconType . 79
Button.Pressed . 79
Button.Selected . 80
Button.Text . 80
Button.Toggle . 80

C
Checkbox.Right . 83
Checkbox.Selected . 83
Choice.Active . 85
Choice.Clear . 85
Choice.Count . 86
Choice.GetEntry . 86
Choice.Insert . 86
Choice.Remove . 87
Choice.Rename . 87
Combobox.Acknowledge . 89
Combobox.Clear . 89
Combobox.Close . 90
Combobox.Count . 90
Combobox.GetEntry . 90
Combobox.Insert . 91
Combobox.Open . 91
Combobox.Popup . 91
Combobox.Remove . 92
Combobox.Rename . 92
Combobox.Selected . 92
Combobox.Value . 93

D
Dialog.EndModal . 96
Dialog.ShowModal . 96

F
Finddialog.Down . 99
Finddialog.Find . 99
Finddialog.FindNext . 99
Finddialog.FindString . 100
Finddialog.MatchCase . 100
Finddialog.NoMatchCase . 100
Finddialog.NoUpDown . 101
Finddialog.NoWholeWord . 101
Finddialog.Replace . 101
Finddialog.ReplaceAll . 101
Finddialog.ReplaceMode . 102
Finddialog.ReplaceString 102
Finddialog.WholeWord . 102

326 RapaGUI manual

G
Group.Append . 105
Group.Color . 106
Group.Columns . 107
Group.ExitChange . 107
Group.Frame . 107
Group.FrameTitle . 108
Group.HAlign . 108
Group.Hide . 109
Group.HorizSpacing . 109
Group.Icon . 109
Group.IconScale . 110
Group.IconType . 110
Group.InitChange . 111
Group.Insert . 111
Group.Padding . 112
Group.Paint . 112
Group.Prepend . 114
Group.Remove . 114
Group.SameSize . 115
Group.Spacing . 115
Group.Title . 115
Group.VAlign . 116
Group.VertSpacing . 116
Group.Weight . 117

H
Hollywood.Display . 121
Hollywood.DropFile . 121
Hollywood.DropTarget . 122
HSpace.Width . 123
HSplitter.Border . 125
HSplitter.Gravity . 125
HSplitter.MinPaneSize . 126
HSplitter.Position . 126
HSplitter.Split . 126
HSplitter.Unsplit . 127
HTMLview.CanGoBack . 129
HTMLview.CanGoForward . 129
HTMLview.ClearHistory . 129
HTMLview.Contents . 130
HTMLview.File . 130
HTMLview.GoBack . 130
HTMLview.GoForward . 131
HTMLview.Reload . 131
HTMLview.Search . 131
HTMLview.Title . 132
HTMLview.URL . 132
Hyperlink.Label . 133
Hyperlink.URL . 133

I
Image.Brush . 135
Image.BrushScale . 135
Image.BrushType . 136

L
Label.Align . 137
Label.Text . 137
Listview.AbortEditing . 140
Listview.Active . 140
Listview.Alternate . 141
Listview.Clear . 141
Listview.ClickColumn . 141
Listview.Columns . 142
Listview.CompareItems . 142
Listview.DefClickColumn . 143
Listview.DoubleClick . 143
Listview.DropFile . 143
Listview.DropTarget . 144
Listview.Edit . 144
Listview.Entries . 145
Listview.Exchange . 145
Listview.First . 146
Listview.ForceMode . 146
Listview.GetColumnID . 147
Listview.GetDisabled . 147
Listview.GetEntry . 147
Listview.GetSelection . 148
Listview.GetState . 148
Listview.HRules . 149
Listview.Insert . 149
Listview.InsertColumn . 150
Listview.ItemStyle . 152
Listview.Jump . 152
Listview.LongClick . 153
Listview.Move . 153
Listview.MultiSelect . 154
Listview.Quiet . 154
Listview.Remove . 154
Listview.RemoveColumn . 155
Listview.Rename . 155
Listview.RowHeight . 156
Listview.Select . 156
Listview.SetDisabled . 157
Listview.SetState . 157
Listview.Sort . 158
Listview.SortColumn . 158
Listview.StartEditing . 159
Listview.SystemTheme . 159
Listview.TitleClick . 159
Listview.ValueChange . 160
Listview.Visible . 160
Listview.VRules . 161
Listviewcolumn.Align . 163
Listviewcolumn.Checkbox . 163
Listviewcolumn.Editable . 164
Listviewcolumn.Hide . 164
Listviewcolumn.Icon . 165
Listviewcolumn.IconScale 165
Listviewcolumn.IconType . 166
Listviewcolumn.Sortable . 166
Listviewcolumn.SortOrder 167
Listviewcolumn.Title . 167

Index 327

Listviewcolumn.Width . 167
Listviewitem.Icon . 169

M
Menu.Append . 171
Menu.Disabled . 172
Menu.Insert . 172
Menu.NoAutoKey . 172
Menu.Prepend . 173
Menu.Remove . 173
Menu.Title . 174
Menu.Type . 174
Menubar.Append . 176
Menubar.Insert . 176
Menubar.Prepend . 177
Menubar.Remove . 177
Menuitem.Disabled . 179
Menuitem.Help . 179
Menuitem.NoAutoKey . 180
Menuitem.Selected . 180
Menuitem.Shortcut . 180
Menuitem.Title . 182
Menuitem.Type . 182
MOAI.Class . 185
moai.CreateApp . 45
moai.CreateDialog . 46
moai.CreateObject . 47
moai.DoMethod . 49
moai.FreeApp . 49
moai.FreeDialog . 50
moai.FreeImage . 50
moai.FreeObject . 51
moai.Get . 52
moai.HaveObject . 52
MOAI.I18N . 185
MOAI.ID . 185
MOAI.NoNotify . 186
moai.Notify . 53
MOAI.Notify . 186
MOAI.NotifyData . 186
moai.Request . 53
moai.Set . 54
moai.UpdateImage . 55
MOAI.UserData . 187

P
Pageview.Active . 189
Pageview.Append . 190
Pageview.GetPageID . 190
Pageview.Insert . 191
Pageview.Mode . 191
Pageview.Multiline . 192
Pageview.Pages . 192
Pageview.PlainBG . 192
Pageview.Position . 193
Pageview.Prepend . 193

Pageview.Remove . 194
Popcolor.RGB . 195
Popcolor.Title . 195
Popfile.File . 197
Popfile.Pattern . 197
Popfile.SaveMode . 197
Popfile.Title . 198
Popfont.Font . 199
Popfont.MaxSize . 199
Popfont.MinSize . 199
Popfont.Title . 200
Poppath.Path . 201
Poppath.Title . 201
Progressbar.Horiz . 203
Progressbar.Level . 203
Progressbar.Max . 203

R
Radio.Active . 205
Radio.Columns . 205
Radio.GetItem . 206
Radio.SetItem . 206
Radio.Title . 206

S
Scrollbar.AutoScale . 211
Scrollbar.Horiz . 211
Scrollbar.Level . 211
Scrollbar.Range . 212
Scrollbar.StepSize . 212
Scrollbar.Target . 213
Scrollbar.UseWinBorder . 213
Scrollbar.Visible . 214
Scrollcanvas.AutoBars . 215
Scrollcanvas.AutoScale . 215
Scrollcanvas.Paint . 216
Scrollcanvas.Scroll . 217
Scrollcanvas.StepSize . 217
Scrollcanvas.UseLeftBorder 218
Scrollcanvas.UseWinBorder 218
Scrollcanvas.VirtHeight . 219
Scrollcanvas.VirtWidth . 219
Scrollgroup.AutoBars . 221
Scrollgroup.Horiz . 221
Scrollgroup.UseWinBorder 222
Slider.Drag . 223
Slider.Horiz . 223
Slider.Level . 223
Slider.Max . 224
Slider.Min . 224
Slider.Quiet . 224
Slider.Release . 225
Slider.Reverse . 225
Slider.StepSize . 225
Statusbaritem.Text . 229
Statusbaritem.Width . 229

328 RapaGUI manual

T
Text.Align . 231
Text.Frame . 231
Text.Text . 231
Texteditor.Align . 233
Texteditor.AreaMarked . 233
Texteditor.Bold . 234
Texteditor.Clear . 234
Texteditor.Color . 234
Texteditor.Copy . 235
Texteditor.CursorPos . 235
Texteditor.Cut . 235
Texteditor.GetLineLength 236
Texteditor.GetPosition . 236
Texteditor.GetSelection . 237
Texteditor.GetText . 237
Texteditor.GetXY . 237
Texteditor.HasChanged . 238
Texteditor.Hint . 238
Texteditor.Insert . 239
Texteditor.Italic . 239
Texteditor.Mark . 239
Texteditor.MarkAll . 240
Texteditor.MarkNone . 240
Texteditor.NoWrap . 240
Texteditor.Paste . 241
Texteditor.ReadOnly . 241
Texteditor.Redo . 241
Texteditor.RedoAvailable 242
Texteditor.ScrollToLine . 242
Texteditor.SetBold . 242
Texteditor.SetColor . 243
Texteditor.SetItalic . 243
Texteditor.SetUnderline . 244
Texteditor.Styled . 244
Texteditor.Text . 245
Texteditor.Underline . 245
Texteditor.Undo . 245
Texteditor.UndoAvailable 246
Textentry.Accept . 247
Textentry.Acknowledge . 247
Textentry.AdvanceOnCR . 248
Textentry.Copy . 248
Textentry.CursorPos . 248
Textentry.Cut . 248
Textentry.GetSelection . 249
Textentry.Hint . 249
Textentry.Insert . 249
Textentry.Mark . 250
Textentry.MarkAll . 250
Textentry.MarkNone . 250
Textentry.MaxLen . 251
Textentry.Password . 251
Textentry.Paste . 251
Textentry.ReadOnly . 252
Textentry.Redo . 252
Textentry.Reject . 252
Textentry.Text . 253

Textentry.Undo . 253
Textview.Align . 255
Textview.Append . 255
Textview.Styled . 255
Textview.Text . 256
Toolbar.Horiz . 257
Toolbar.ViewMode . 258
Toolbarbutton.Disabled . 259
Toolbarbutton.Help . 259
Toolbarbutton.Icon . 259
Toolbarbutton.IconScale . 260
Toolbarbutton.IconType . 260
Toolbarbutton.Pressed . 261
Toolbarbutton.Selected . 261
Toolbarbutton.Tooltip . 262
Toolbarbutton.Type . 262
Treeview.AbortEditing . 264
Treeview.Active . 265
Treeview.Alternate . 265
Treeview.Clear . 265
Treeview.ClickColumn . 266
Treeview.Close . 266
Treeview.DoubleClick . 266
Treeview.DropFile . 267
Treeview.DropTarget . 267
Treeview.EditableNodes . 268
Treeview.ForceMode . 268
Treeview.GetEntry . 269
Treeview.HRules . 271
Treeview.InsertLeaf . 271
Treeview.InsertNode . 272
Treeview.Open . 273
Treeview.Remove . 274
Treeview.StartEditing . 274
Treeview.ValueChange . 275
Treeview.VRules . 275
Treeviewcolumn.Align . 277
Treeviewcolumn.Checkbox . 277
Treeviewcolumn.Editable . 278
Treeviewcolumn.Hide . 278
Treeviewcolumn.Icon . 279
Treeviewcolumn.IconScale 279
Treeviewcolumn.IconType . 280
Treeviewcolumn.Title . 281
Treeviewcolumn.Width . 281
Treeviewleaf.Edit . 283
Treeviewleaf.GetDisabled 283
Treeviewleaf.GetIcon . 284
Treeviewleaf.GetItem . 284
Treeviewleaf.GetState . 285
Treeviewleaf.SetDisabled 285
Treeviewleaf.SetIcon . 285
Treeviewleaf.SetItem . 286
Treeviewleaf.SetState . 286
Treeviewleaf.UID . 287
Treeviewleafitem.Icon . 289
Treeviewnode.Edit . 291
Treeviewnode.Icon . 291

Index 329

Treeviewnode.Name . 292
Treeviewnode.UID . 292

V
VSpace.Height . 295
VSplitter.Border . 297
VSplitter.Gravity . 297
VSplitter.MinPaneSize . 298
VSplitter.Position . 298
VSplitter.Split . 298
VSplitter.Unsplit . 299

W
Window.Accelerator . 301
Window.Activate . 301
Window.ActiveObject . 302
Window.Borderless . 302
Window.CloseGadget . 302
Window.CloseRequest . 303
Window.DefaultObject . 303
Window.DragBar . 304
Window.Height . 304

Window.HideFromTaskbar . 304
Window.Left . 305
Window.Margin . 305
Window.MaximizeGadget . 305
Window.Menubar . 306
Window.MinimizeGadget . 306
Window.NoCyclerMenu . 306
Window.Open . 307
Window.Orientation . 307
Window.Parent . 308
Window.PubScreen . 308
Window.Remember . 308
Window.ScreenTitle . 309
Window.SingleMenu . 309
Window.SizeChange . 310
Window.SizeGadget . 310
Window.StayOnTop . 310
Window.Subtitle . 311
Window.Title . 313
Window.Toolwindow . 311
Window.Top . 311
Window.UseBottomBorderScroller 312
Window.UseLeftBorderScroller 312
Window.UseRightBorderScroller 312
Window.Width . 313

	General information
	Introduction
	Terms and conditions
	Requirements

	About RapaGUI
	History
	Compatibility notes
	Future
	Frequently asked questions
	Credits

	Conceptual overview
	Application tree
	GUI layout
	Running GUIs
	Initializing RapaGUI
	Object handling
	Event handling
	Attribute notifications
	Dynamic objects
	Sizeability
	Applicability
	Device-independent pixels
	High-DPI support
	Keyboard shortcuts
	Text formatting codes
	Implementing help texts
	Context menus
	Internationalization
	Character encoding
	Hollywood bridge
	Image cache
	Platform-dependent features
	MUI Royale compatibility

	Tutorial
	Tutorial

	Examples
	Examples

	Function reference
	moai.CreateApp
	moai.CreateDialog
	moai.CreateObject
	moai.DoMethod
	moai.FreeApp
	moai.FreeDialog
	moai.FreeImage
	moai.FreeObject
	moai.Get
	moai.HaveObject
	moai.Notify
	moai.Request
	moai.Set
	moai.UpdateImage

	Accelerator class
	Overview

	Acceleratoritem class
	Overview
	Acceleratoritem.Mod
	Acceleratoritem.Pressed

	Application class
	Overview
	Application.AboutMUI
	Application.AboutRapaGUI
	Application.AddWindow
	Application.ContextMenu
	Application.HelpFile
	Application.Icon
	Application.OpenConfigWindow
	Application.RemoveWindow
	Application.Sleep
	Application.ShowHelp
	Application.ShowHelpNode
	Application.UseIcons
	Application.WindowMenu

	Area class
	Overview
	Area.ContextMenu
	Area.Disabled
	Area.FixHeight
	Area.FixWidth
	Area.FontName
	Area.FontSize
	Area.FontStyle
	Area.Height
	Area.Hide
	Area.Left
	Area.NoAutoKey
	Area.Redraw
	Area.Tooltip
	Area.Top
	Area.Weight
	Area.Width

	Busybar class
	Overview
	Busybar.Move
	Busybar.Reset

	Button class
	Overview
	Button.Hint
	Button.Icon
	Button.IconPos
	Button.IconScale
	Button.IconType
	Button.Pressed
	Button.Selected
	Button.Text
	Button.Toggle

	Checkbox class
	Overview
	Checkbox.Right
	Checkbox.Selected

	Choice class
	Overview
	Choice.Active
	Choice.Clear
	Choice.Count
	Choice.GetEntry
	Choice.Insert
	Choice.Remove
	Choice.Rename

	Combobox class
	Overview
	Combobox.Acknowledge
	Combobox.Clear
	Combobox.Close
	Combobox.Count
	Combobox.GetEntry
	Combobox.Insert
	Combobox.Open
	Combobox.Popup
	Combobox.Remove
	Combobox.Rename
	Combobox.Selected
	Combobox.Value

	Dialog class
	Overview
	Dialog.EndModal
	Dialog.ShowModal

	Finddialog class
	Overview
	Finddialog.Down
	Finddialog.Find
	Finddialog.FindNext
	Finddialog.FindString
	Finddialog.MatchCase
	Finddialog.NoMatchCase
	Finddialog.NoUpDown
	Finddialog.NoWholeWord
	Finddialog.Replace
	Finddialog.ReplaceAll
	Finddialog.ReplaceMode
	Finddialog.ReplaceString
	Finddialog.WholeWord

	Group class
	Overview
	Group.Append
	Group.Color
	Group.Columns
	Group.ExitChange
	Group.Frame
	Group.FrameTitle
	Group.HAlign
	Group.Hide
	Group.HorizSpacing
	Group.Icon
	Group.IconScale
	Group.IconType
	Group.InitChange
	Group.Insert
	Group.Padding
	Group.Paint
	Group.Prepend
	Group.Remove
	Group.SameSize
	Group.Spacing
	Group.Title
	Group.VAlign
	Group.VertSpacing
	Group.Weight

	HLine class
	Overview

	Hollywood class
	Overview
	Hollywood.Display
	Hollywood.DropFile
	Hollywood.DropTarget

	HSpace class
	Overview
	HSpace.Width

	HSplitter class
	Overview
	HSplitter.Border
	HSplitter.Gravity
	HSplitter.MinPaneSize
	HSplitter.Position
	HSplitter.Split
	HSplitter.Unsplit

	HTMLview class
	Overview
	HTMLview.CanGoBack
	HTMLview.CanGoForward
	HTMLview.ClearHistory
	HTMLview.Contents
	HTMLview.File
	HTMLview.GoBack
	HTMLview.GoForward
	HTMLview.Reload
	HTMLview.Search
	HTMLview.Title
	HTMLview.URL

	Hyperlink class
	Overview
	Hyperlink.Label
	Hyperlink.URL

	Image class
	Overview
	Image.Brush
	Image.BrushScale
	Image.BrushType

	Label class
	Overview
	Label.Align
	Label.Text

	Listview class
	Overview
	Listview.AbortEditing
	Listview.Active
	Listview.Alternate
	Listview.Clear
	Listview.ClickColumn
	Listview.Columns
	Listview.CompareItems
	Listview.DefClickColumn
	Listview.DoubleClick
	Listview.DropFile
	Listview.DropTarget
	Listview.Edit
	Listview.Entries
	Listview.Exchange
	Listview.First
	Listview.ForceMode
	Listview.GetColumnID
	Listview.GetDisabled
	Listview.GetEntry
	Listview.GetSelection
	Listview.GetState
	Listview.HRules
	Listview.Insert
	Listview.InsertColumn
	Listview.ItemStyle
	Listview.Jump
	Listview.LongClick
	Listview.Move
	Listview.MultiSelect
	Listview.Quiet
	Listview.Remove
	Listview.RemoveColumn
	Listview.Rename
	Listview.RowHeight
	Listview.Select
	Listview.SetDisabled
	Listview.SetState
	Listview.Sort
	Listview.SortColumn
	Listview.StartEditing
	Listview.SystemTheme
	Listview.TitleClick
	Listview.ValueChange
	Listview.Visible
	Listview.VRules

	Listviewcolumn class
	Overview
	Listviewcolumn.Align
	Listviewcolumn.Checkbox
	Listviewcolumn.Editable
	Listviewcolumn.Hide
	Listviewcolumn.Icon
	Listviewcolumn.IconScale
	Listviewcolumn.IconType
	Listviewcolumn.Sortable
	Listviewcolumn.SortOrder
	Listviewcolumn.Title
	Listviewcolumn.Width

	Listviewitem class
	Overview
	Listviewitem.Icon

	Menu class
	Overview
	Menu.Append
	Menu.Disabled
	Menu.Insert
	Menu.NoAutoKey
	Menu.Prepend
	Menu.Remove
	Menu.Title
	Menu.Type

	Menubar class
	Overview
	Menubar.Append
	Menubar.Insert
	Menubar.Prepend
	Menubar.Remove

	Menuitem class
	Overview
	Menuitem.Disabled
	Menuitem.Help
	Menuitem.NoAutoKey
	Menuitem.Selected
	Menuitem.Shortcut
	Menuitem.Title
	Menuitem.Type

	MOAI class
	Overview
	MOAI.Class
	MOAI.I18N
	MOAI.ID
	MOAI.NoNotify
	MOAI.Notify
	MOAI.NotifyData
	MOAI.UserData

	Pageview class
	Overview
	Pageview.Active
	Pageview.Append
	Pageview.GetPageID
	Pageview.Insert
	Pageview.Mode
	Pageview.Multiline
	Pageview.Pages
	Pageview.PlainBG
	Pageview.Position
	Pageview.Prepend
	Pageview.Remove

	Popcolor class
	Overview
	Popcolor.RGB
	Popcolor.Title

	Popfile class
	Overview
	Popfile.File
	Popfile.Pattern
	Popfile.SaveMode
	Popfile.Title

	Popfont class
	Overview
	Popfont.Font
	Popfont.MaxSize
	Popfont.MinSize
	Popfont.Title

	Poppath class
	Overview
	Poppath.Path
	Poppath.Title

	Progressbar class
	Overview
	Progressbar.Horiz
	Progressbar.Level
	Progressbar.Max

	Radio class
	Overview
	Radio.Active
	Radio.Columns
	Radio.GetItem
	Radio.SetItem
	Radio.Title

	Rectangle class
	Overview

	Scrollbar class
	Overview
	Scrollbar.AutoScale
	Scrollbar.Horiz
	Scrollbar.Level
	Scrollbar.Range
	Scrollbar.StepSize
	Scrollbar.Target
	Scrollbar.UseWinBorder
	Scrollbar.Visible

	Scrollcanvas class
	Overview
	Scrollcanvas.AutoBars
	Scrollcanvas.AutoScale
	Scrollcanvas.Paint
	Scrollcanvas.Scroll
	Scrollcanvas.StepSize
	Scrollcanvas.UseLeftBorder
	Scrollcanvas.UseWinBorder
	Scrollcanvas.VirtHeight
	Scrollcanvas.VirtWidth

	Scrollgroup class
	Overview
	Scrollgroup.AutoBars
	Scrollgroup.Horiz
	Scrollgroup.UseWinBorder

	Slider class
	Overview
	Slider.Drag
	Slider.Horiz
	Slider.Level
	Slider.Max
	Slider.Min
	Slider.Quiet
	Slider.Release
	Slider.Reverse
	Slider.StepSize

	Statusbar class
	Overview

	Statusbaritem class
	Overview
	Statusbaritem.Text
	Statusbaritem.Width

	Text class
	Overview
	Text.Align
	Text.Frame
	Text.Text

	Texteditor class
	Overview
	Texteditor.Align
	Texteditor.AreaMarked
	Texteditor.Bold
	Texteditor.Clear
	Texteditor.Color
	Texteditor.Copy
	Texteditor.CursorPos
	Texteditor.Cut
	Texteditor.GetLineLength
	Texteditor.GetPosition
	Texteditor.GetSelection
	Texteditor.GetText
	Texteditor.GetXY
	Texteditor.HasChanged
	Texteditor.Hint
	Texteditor.Insert
	Texteditor.Italic
	Texteditor.Mark
	Texteditor.MarkAll
	Texteditor.MarkNone
	Texteditor.NoWrap
	Texteditor.Paste
	Texteditor.ReadOnly
	Texteditor.Redo
	Texteditor.RedoAvailable
	Texteditor.ScrollToLine
	Texteditor.SetBold
	Texteditor.SetColor
	Texteditor.SetItalic
	Texteditor.SetUnderline
	Texteditor.Styled
	Texteditor.Text
	Texteditor.Underline
	Texteditor.Undo
	Texteditor.UndoAvailable

	Textentry class
	Overview
	Textentry.Accept
	Textentry.Acknowledge
	Textentry.AdvanceOnCR
	Textentry.Copy
	Textentry.CursorPos
	Textentry.Cut
	Textentry.GetSelection
	Textentry.Hint
	Textentry.Insert
	Textentry.Mark
	Textentry.MarkAll
	Textentry.MarkNone
	Textentry.MaxLen
	Textentry.Password
	Textentry.Paste
	Textentry.ReadOnly
	Textentry.Redo
	Textentry.Reject
	Textentry.Text
	Textentry.Undo

	Textview class
	Overview
	Textview.Align
	Textview.Append
	Textview.Styled
	Textview.Text

	Toolbar class
	Overview
	Toolbar.Horiz
	Toolbar.ViewMode

	Toolbarbutton class
	Overview
	Toolbarbutton.Disabled
	Toolbarbutton.Help
	Toolbarbutton.Icon
	Toolbarbutton.IconScale
	Toolbarbutton.IconType
	Toolbarbutton.Pressed
	Toolbarbutton.Selected
	Toolbarbutton.Tooltip
	Toolbarbutton.Type

	Treeview class
	Overview
	Treeview.AbortEditing
	Treeview.Active
	Treeview.Alternate
	Treeview.Clear
	Treeview.ClickColumn
	Treeview.Close
	Treeview.DoubleClick
	Treeview.DropFile
	Treeview.DropTarget
	Treeview.EditableNodes
	Treeview.ForceMode
	Treeview.GetEntry
	Treeview.HRules
	Treeview.InsertLeaf
	Treeview.InsertNode
	Treeview.Open
	Treeview.Remove
	Treeview.StartEditing
	Treeview.ValueChange
	Treeview.VRules

	Treeviewcolumn class
	Overview
	Treeviewcolumn.Align
	Treeviewcolumn.Checkbox
	Treeviewcolumn.Editable
	Treeviewcolumn.Hide
	Treeviewcolumn.Icon
	Treeviewcolumn.IconScale
	Treeviewcolumn.IconType
	Treeviewcolumn.Title
	Treeviewcolumn.Width

	Treeviewleaf class
	Overview
	Treeviewleaf.Edit
	Treeviewleaf.GetDisabled
	Treeviewleaf.GetIcon
	Treeviewleaf.GetItem
	Treeviewleaf.GetState
	Treeviewleaf.SetDisabled
	Treeviewleaf.SetIcon
	Treeviewleaf.SetItem
	Treeviewleaf.SetState
	Treeviewleaf.UID

	Treeviewleafitem class
	Overview
	Treeviewleafitem.Icon

	Treeviewnode class
	Overview
	Treeviewnode.Edit
	Treeviewnode.Icon
	Treeviewnode.Name
	Treeviewnode.UID

	VLine class
	Overview

	VSpace class
	Overview
	VSpace.Height

	VSplitter class
	Overview
	VSplitter.Border
	VSplitter.Gravity
	VSplitter.MinPaneSize
	VSplitter.Position
	VSplitter.Split
	VSplitter.Unsplit

	Window class
	Overview
	Window.Accelerator
	Window.Activate
	Window.ActiveObject
	Window.Borderless
	Window.CloseGadget
	Window.CloseRequest
	Window.DefaultObject
	Window.DragBar
	Window.Height
	Window.HideFromTaskbar
	Window.Left
	Window.Margin
	Window.MaximizeGadget
	Window.Menubar
	Window.MinimizeGadget
	Window.NoCyclerMenu
	Window.Open
	Window.Orientation
	Window.Parent
	Window.PubScreen
	Window.Remember
	Window.ScreenTitle
	Window.SingleMenu
	Window.SizeChange
	Window.SizeGadget
	Window.StayOnTop
	Window.Subtitle
	Window.Toolwindow
	Window.Top
	Window.UseBottomBorderScroller
	Window.UseLeftBorderScroller
	Window.UseRightBorderScroller
	Window.Title
	Window.Width

	Licenses
	wxWidgets license
	MUI license
	Expat license
	LGPL license

	Index

