XLSX Plugin 1.0

Create and modify XLSX documents with Hollywood

Andreas Falkenhahn

Table of Contents

4.23

1 General information............................. 1
1.1 IntroducCtion...........o oot 1
1.2 Terms and conditions. ...t 1
1.3 Requirements.coooiiiiiiii i 2
1.4 Installation........ ... 2

2 About xIsx.hwp............... 3
2.1 CreditS . .ottt 3
2.2 Frequently asked questions............. ... il 3
2.3 KNOWI ISSUES . o oottt 3
2.4 Future. 3
2.5 HiStOry .o oe e 3

3 Usage. ... 5
3.1 Interfaces.ooo i 5
3.2 Library interface......... .o 5
3.3 Serialization interface......... ..o 5

4 Function reference........... 7
4.1 xlsx.AddSheet ... 7
4.2 xIsx.CellRange.o 7
4.3 xlsx.ClearCellFormula i 8
4.4 xlsx.ClearCellValue......... ..o 9
4.5 XISK.ClOSE . o vt 10
4.6 XISK.OTeate . o oottt 10
4.7 xlsx.DeletePropertyo i 11
4.8 xlsx.DeleteSheeto 11
4.9 xlsx.GetCellFormula.......... .. i 12
4.10 xlsx.GetCellReference 13
4.11 xlsx.GetCellValue 13
4.12 xlsx.GetColumnCount. ...t 15
4.13 xlsx.GetColumnWidth......... i 15
4.14 xlsx.GetObjectType 16
4.15 xlsx.GetPropertyo 16
4.16 xlsx.GetRowCountttt 17
4.17 xlsx.GetRowHeight o 18
4.18 xlsx.GetSheetCountoo it 18
4.19 xlsx.GetSheetIndex......... oo 19
4.20 xlsx.GetSheetName......... ... i 19
4.21 xlsx.GetSheetTypeo 19
4.22 xlsx.GetSheet Visibility ... 20

xlsx. HaveCellFormula 21

ii XLSX plugin manual

4.24 xlsx.HideColummcooiiiiii i 21
4.25 XIsx.HideRoOWo 22
4.26 xlsx.IsColumnHidden......... i 22
4.27 xlsxIsRowHidden o 23
4.28 xlsx.IsSheetActive.o 23
4.29 xlsx.IsSheetSelectedt 24
4.30 xIsx.MoOveSheetooi 24
431 XISK.OPON . oo it 25
4.32 XISK. SAVE . oo 26
4.33 XISX.SaVEAS .. 26
4.34 xlsx.SetCellFormula i 26
4.35 xlsx.SetCellValue.ot 27
4.36 xlsx.SetColumnWidth i 29
4.37 xlsx.SetDefaultSheet.......... ... i 29
4.38 xIsx.SetProperty 30
4.39 xlIsx.SetRowHeight o i 30
4.40 xlIsx.SetSheetActive. 31
4.41 xlsx.SetSheetName ... 31
4.42 xlsx.SetSheetSelected 32
4.43 xlsx.SetSheetVisibility ... i 32
4.44 xlIsx.UseSharedStringscooiiiiiiiiiiiiiiii ., 33
Appendix A Licenses............................. 35
ATl OpenXLSX LCENSE . .. uvet ettt e e 35
A2 pugixml lICENSE . ..o\ttt 35
A3 MIniZ lHCensSe . ..o 36

1 General information

1.1 Introduction

The XLSX plugin allows you to conveniently read and write XLSX documents from Hol-
lywood scripts. It offers a wide variety of functions to set and get cell values, cell types,
cell formulas, document/worksheet properties and several other attributes. It also offers an
iterator function for a high performance iteration of a large number of cells.

On top of that, the XLSX plugin also supports Hollywood’s serialization interface which
means that you can conveniently serialize Hollywood tables to XLSX documents by just a
single call to Hollywood’s SerializeTable() function. In the same manner you can also
deserialize whole XLSX documents into Hollywood tables by a single call to Hollywood’s
DeserializeTable() function. It just doesn’t get any easier!

1.2 Terms and conditions

xlsx.hwp is © Copyright 2022 by Andreas Falkenhahn (in the following referred to as "the
author"). All rights reserved.

The program is provided "as-is" and the author cannot be made responsible of any possible
harm done by it. You are using this program absolutely at your own risk. No warranties
are implied or given by the author.

This plugin may be freely distributed as long as the following three conditions are met:
1. No modifications must be made to the plugin.
2. It is not allowed to sell this plugin.

3. If you want to put this plugin on a coverdisc, you need to ask for permission first.

This software uses OpenXLSX Copyright (C) 2020 Kenneth Troldal Balslev. See Section A.1
[OpenXLSX license], page 35, for details.

This software uses pugixml Copyright (C) 2006-2022 Arseny Kapoulkine. See Section A.2
[pugixml license], page 35, for details.

This software uses MiniZ Copyright (C) 2010-2014 Rich Geldreich. See Section A.3 [MiniZ
license|, page 36, for details.

All trademarks are the property of their respective owners.

DISCLAIMER: THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDER AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU

2 XLSX plugin manual

FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BE-
ING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PAR-
TIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

1.3 Requirements
— Hollywood 9.0 or better

— macOS version requires macOS 10.14 or better

1.4 Installation

Installing xlsx.hwp is straightforward and simple: Just copy the file xlsx.hwp for
the platform of your choice to Hollywood’s plugins directory. On all systems except
on AmigaOS and compatibles, plugins must be stored in a directory named Plugins
that is in the same directory as the main Hollywood program. On AmigaOS and
compatible systems, plugins must be installed to LIBS:Hollywood instead. On macOS,
the Plugins directory must be inside the Resources directory of the application bundle,
i.e. inside the HollywoodInterpreter.app/Contents/Resources directory. Note that
HollywoodInterpreter.app is stored inside the Hollywood.app application bundle itself,
namely in Hollywood.app/Contents/Resources.

On Windows you should also copy the file x1sx. chm to the Docs directory of your Hollywood
installation. Then you will be able to get online help by pressing F1 when the cursor is over
a xlsx.hwp function in the Hollywood IDE.

On Linux and macOS copy the xlsx directory that is inside the Docs directory of
xlsx.hwp’s distribution archive to the Docs directory of your Hollywood installation. Note
that on macOS the Docs directory is within the Hollywood.app application bundle, i.e. in
Hollywood.app/Contents/Resources/Docs.

2 About xlIsx.hwp

2.1 Credits

xlsx.hwp was written by Andreas Falkenhahn. This plugin was first designed as a proof-
of-concept for Hollywood 9’s new serialization interface and was later expanded into a full
library for dealing with XLSX documents. Thanks have to go to Kenneth Troldal Balslev
for his wonderful OpenXLSX on which this plugin is based.

If you want to contact me, you can either send an e-mail to andreas@airsoftsoftwair.
de or use the contact form on http://www.hollywood-mal.com.

2.2 Frequently asked questions

This section covers some frequently asked questions. Please read them first before asking
on the forum because your problem might have been covered here.

Q: Is there a Hollywood forum where I can get in touch with other users?

A: Yes, please check out the "Community" section of the official Hollywood Portal online
at http://www.hollywood-mal. com.

Q: Where can I ask for help?

A: There’s an active forum at http://forums.hollywood-mal.com. You're welcome to
join it and ask your question there.

Q: I have found a bug.

A: Please post about it in the "Bugs" section of the forum.

2.3 Known issues

Here is a list of things that xlsx.hwp doesn’t support yet or that may be confusing in some
way:
— thd

2.4 Future

Here are some things that are on my to do list:

— add support for the 68k platform (currently there is no C++17 compiler for Amiga 68k
so it’s not possible to support the platform at the moment)

— add support for cell formatting
— add support for embedding images

Don’t hesitate to contact me if xlsx.hwp lacks a certain feature that is important for your
project.

2.5 History

Please see the file history.txt for a complete change log of xlsx.hwp.

andreas@airsoftsoftwair.de
andreas@airsoftsoftwair.de
http://www.hollywood-mal.com
http://www.hollywood-mal.com
http://forums.hollywood-mal.com

3 Usage

3.1 Interfaces

There are two ways of using this plugin: Either through the library interface or through the
serialization interface. Using the plugin through the serialization interface is easier and very
convenient but it comes at the expense of flexibility. Using the plugin through the library
interface is a bit more difficult but offers full flexibility. Please see the next two chapters
for a brief overview of the two different interfaces.

3.2 Library interface

The typical way of using this plugin is to deal with XLSX documents through the plugin’s
library interface. The library interface consists of a variety of functions that allow you to
open and save XLSX documents, set and get cell values and other document and worksheet
properties. For example, here is a script which creates an XLSX document that has 100
rows and 30 columns. The cell values will be set to a text string that contains each cell’s
column and row and the XLSX document will be saved as test.xlsx.

OREQUIRE "xlsx"
x1lsx.Create(l, "test.xlsx")
For Local y = 1 To 100
For Local x = 1 to 30
xlsx.SetCellValue(l, x, y, "Cell " .. x .. "/" .. y)
Next
Next
x1sx.Save(1)
x1sx.Close(1)

Alternatively, you can also use the plugin’s serialization interface. This is easier because it
only requires a single function call to convert Hollywood tables to XLSX documents and
vice versa but you won’t have fine-tuned control over everything as you have when using
the library interface.

See the next chapter for more details on the plugin’s serialization interface.

3.3 Serialization interface

If you don’t want to use xlsx.hwp’s library interface (see above) for some reason, you can
also use the plugin’s serialization interface. This is easier to use because it only requires a
single function call to convert Hollywood tables to XLSX documents and vice versa but you
won’t have fine-tuned control over everything as you have when using the library interface.

Access to the xlsx.hwp’s serialization interface is through Hollywood’s SerializeTable ()
and DeserializeTable() functions, or, alternatively, through the ReadTable() and
WriteTable() functions. By using the serialization interface, you can convert an XLSX
document into a Hollywood table through just a single function call:

t = DeserializeTable(FileToString("test.x1lsx"), "xlsx")

The code above will read all rows and columns from test.xlsx and store them in the
Hollywood table t. You could then print all rows and columns in that table like this:

6 XLSX plugin manual

For Local y = 0 To ListItems(t) - 1
For Local x = 0 To ListItems(t[yl) - 1
DebugPrint (t [y] [x])
Next
Next

You could then simply change cell values by writing new values to the t table. For example,
the following code changes the value of the cell in the 5th column and the 10th row to
"Hello":

t[9] [4] = "Hello"

When you’re done with all modifications, you can simply convert your Hollywood table
back into an XLSX document in just a single line like this:

StringToFile(SerializeTable(t, "x1lsx"), "test2.xlsx")

The code above will convert the table t to an XLSX document using the xlsx.hwp plugin
and save the XLSX document as test2.x1lsx.

As you can see, the serialization interface is very easy to use but doesn’t offer as much flexi-
bility as the library interface which gives you fine-tuned control over many XLSX documents
features.

4 Function reference

4.1 xlsx.AddSheet

NAME

xlsx.AddSheet — add a new worksheet
SYNOPSIS

x1sx.AddSheet (id, name$[, posl)
FUNCTION

This function will add a new worksheet to the XLSX document specified by id. The
worksheet will be given the name specified by name$. The optional argument pos allows
you to specify where the worksheet should be inserted in the XLSX document (worksheet
positions start at 1). If pos is omitted or set to an out of range position, the new
worksheet will be added as the last worksheet.

INPUTS
id identifier of the XLSX document to use
name$ name for the new worksheet
pos optional: desired insert position, starting from 1 for the first worksheet (de-

faults to 0, which means insert as the last worksheet)

4.2 xlsx.CellRange

NAME
xlsx.CellRange — iterate over cell range

SYNOPSIS
ref = xlsx.CellRange(id, startx, starty, endx, endy[, sheet])
ref xlsx.CellRange(id, startcell$, endcell$[, sheet])

FUNCTION
This function can be used to iterate over a range of cells. You need to pass the cell where
the iteration should start and the cell where it should end. x1sx.CellRange () will then
return an iterator function which can be used together with Hollywood’s generic for loop.
The iterator function will return a reference to a cell that can be passed to all functions
that deal with cells like x1sx.SetCellValue() or x1lsx.GetCellValue().

Passing a cell reference returned by =x1lsx.CellRange() to functions like
x1lsx.SetCellValue() or x1sx.GetCellValue() is much faster than addressing the cell
using its column and row position or its alphanumerical identifier (e.g. "A1"). That’s
why it’s recommended to use x1sx.CellRange () whenever you need to iterate over lots
of cells, especially in huge XLSX documents with thousands of columns and rows.

x1sx.CellRange () supports two ways of specifying the start and cells: You can ei-
ther specify the cells to use by passing their column (x) and row (y) positions in the
startx/starty and endx/endy arguments. Those positions start from 1 for the first

8 XLSX plugin manual

column and row. Alternatively, you can also specify the cells by passing their alphanu-
merical references in the startcell$ and endcell$ parameters, e.g. "A10" for the first
cell in the 10th row. Optionally, you can also pass the index of the worksheet to use
in the optional sheet parameter (starting from 1 for the first worksheet). If the sheet
parameter is omitted, the worksheet set by x1sx.SetDefaultSheet () will be used.

INPUTS
id identifier of the XLSX document to use
startx column index of the start cell
starty row index of the start cell
endx column index of the end cell
endy row index of the end cell
startcell$

alphanumerical start cell reference (e.g. "A1"), only used when startx and
starty are omitted

endcell$ alphanumerical end cell reference (e.g. "Z100"), only used when endx and
endy are omitted

sheet optional: index of the worksheet to use (defaults to the index of the default
worksheet)
RESULTS
ref a cell reference
EXAMPLE

x1lsx.0Open(1l, "test.xlsx")

cols = xlsx.GetColumnCount (1)

rows = x1lsx.GetRowCount (1)

For ref In xlsx.CellRange(1, 1, 1, cols, rows)
DebugPrint ((x1sx.GetCellValue(1l, ref)))

Next

xlsx.Close(1)

The code above opens test.xlsx and prints the values of all cells.

4.3 xlsx.ClearCellFormula

NAME
xlsx.ClearCellFormula — clear cell formula

SYNOPSIS
xlsx.ClearCellFormula(id, x, y, £$[, sheet])
xlsx.ClearCellFormula(id, ref, f$[, sheet])

FUNCTION
This function clears the formula of the specified cell. After calling this function,
x1lsx.HaveCellFormula() will return False. There are two ways of specifying the cell

Chapter 4: Function reference 9

whose formula should be cleared: You can either specify the cell to use by passing the
cell’s column (x) and row (y) position in the x and y arguments. Those positions start
from 1 for the first column and row. Alternatively, you can also specify the cell by
passing its reference in the ref parameter. This can either be a string, e.g. "A10" for
the first cell in the 10th row, or an iterator state returned by the xlsx.CellRange()
function. Optionally, you can also pass the index of the worksheet to use in the optional
sheet parameter (starting from 1 for the first worksheet). If the sheet parameter is
omitted, the worksheet set by x1sx.SetDefaultSheet () will be used.

INPUTS

id identifier of the XLSX document to use

X column index of the cell to use (starting from 1)

y row index of the cell to use (starting from 1)

ref cell reference (e.g. "A1" or an iterator state), only used when x and y are
omitted

sheet optional: index of the worksheet to use (defaults to the index of the default
worksheet)

4.4 xlIsx.ClearCellValue

NAME
xlsx.ClearCellValue — clear cell value

SYNOPSIS
x1sx.ClearCellValue(id, x, y[, sheet])
xlsx.ClearCellValue(id, ref[, sheet])

FUNCTION

This function clears the value of the specified cell. There are two ways of specifying the
cell whose value should be cleared: You can either specify the cell to use by passing
the cell’s column (x) and row (y) position in the x and y arguments. Those positions
start from 1 for the first column and row. Alternatively, you can also specify the cell
by passing its reference in the ref parameter. This can either be a string, e.g. "A10"
for the first cell in the 10th row, or an iterator state returned by the x1sx.CellRange ()
function. Optionally, you can also pass the index of the worksheet to use in the optional
sheet parameter (starting from 1 for the first worksheet). If the sheet parameter is
omitted, the worksheet set by x1sx.SetDefaultSheet () will be used.

INPUTS
id identifier of the XLSX document to use
X column index of the cell to use (starting from 1)
y row index of the cell to use (starting from 1)
ref cell reference (e.g. "A1" or an iterator state), only used when x and y are

omitted

10 XLSX plugin manual

sheet optional: index of the worksheet to use (defaults to the index of the default
worksheet)

4.5 xlsx.Close

NAME

xlsx.Close — close XLSX document
SYNOPSIS

x1lsx.Close(id)
FUNCTION

This function closes the specified XLSX document created by either xlsx.0pen() or
x1lsx.Create(). Note that this function won’t save any changes you have made to the
XLSX document. If you want changes to be saved to the XLSX document, you must
call x1sx.Save() or x1sx.SaveAs() first.

INPUTS
id identifier of the XLSX document to be closed

4.6 xlsx.Create

NAME

xlsx.Create — create an empty XLSX document
SYNOPSIS

[id] = xlsx.Create(id, filename$)
FUNCTION

This function will create an empty XLSX document containing a single worksheet named
"Sheet1". Note that the XLSX document won’t be saved to filename$ until you call
either x1sx.Save() or x1sx.SaveAs() on it.

INPUTS
id identifier for the XLSX document or Nil for auto id selection
filename$
desired path and filename for the new document
RESULTS
id optional: identifier of the document; will only be returned when you pass
Nil as argument 1 (see above)
EXAMPLE

xlsx.Create(l, "test.xlsx")
For Local y = 1 To 100
For Local x = 1 to 30
xlsx.SetCellValue(l, x, y, "Cell " .. x .. "/" .. y)
Next

Chapter 4: Function reference 11

Next
xlsx.Save (1)
xlsx.Close(1)

The code above will create a new XLSX document and add 30 columns and 100 rows to
it. The document will be saved as test.x1lsx.

4.7 xlsx.DeleteProperty

NAME
xlsx.DeleteProperty — delete document property

SYNOPSIS
x1sx.DeleteProperty(id, prop)

FUNCTION
This function allows you to clear the document property specified by prop. The prop
parameter must be one of the following special constants:

#XLSX_PROPERTY_TITLE
#XLSX_PROPERTY_SUBJECT
#XLSX_PROPERTY_CREATOR
#XLSX_PROPERTY_KEYWORDS
#XLSX_PROPERTY_DESCRIPTION
#XLSX_PROPERTY_LASTMODIFIEDBY
#XLSX_PROPERTY_LASTPRINTED
#XLSX_PROPERTY_CREATIONDATE
#XLSX_PROPERTY_MODIFICATIONDATE
#XLSX_PROPERTY_CATEGORY
#XLSX_PROPERTY_APPLICATION
#XLSX_PROPERTY_DOCSECURITY
#XLSX_PROPERTY_SCALECROP
#XLSX_PROPERTY_MANAGER
#XLSX_PROPERTY_COMPANY
#XLSX_PROPERTY_LINKSUPTODATE
#XLSX_PROPERTY_SHAREDDOC
#XLSX_PROPERTY_HYPERLINKBASE
#XLSX_PROPERTY_HYPERLINKSCHANGED
#XLSX_PROPERTY_APPVERSION

INPUTS
id identifier of the XLSX document to use
prop property to clear (see above for possible values)

4.8 xlsx.DeleteSheet

NAME
xlsx.DeleteSheet — delete worksheet

12 XLSX plugin manual

SYNOPSIS
xlsx.DeleteSheet (id, idx)

FUNCTION
This function can be used to delete the worksheet at the position specified by idx from
the XLSX document specified by id. Worksheet positions are counted from 1. Note that
you cannot delete all worksheets from an XLSX document; there needs to be at least
one worksheet in the XLSX document.

INPUTS
id identifier of the XLSX document to use
idx index of the worksheet to delete (first worksheet is at index 1)

4.9 xlIsx.GetCellFormula

NAME
xlsx.GetCellFormula — get cell formula

SYNOPSIS
f$ = x1lsx.GetCellFormula(id, x, y[, sheet])
f$ = xlsx.GetCellFormula(id, ref[, sheet])

FUNCTION

This function returns the formula of a certain cell. There are two ways of specifying the
cell whose formula should be returned: You can either specify the cell to use by passing
the cell’s column (x) and row (y) position in the x and y arguments. Those positions
start from 1 for the first column and row. Alternatively, you can also specify the cell
by passing its reference in the ref parameter. This can either be a string, e.g. "A10"
for the first cell in the 10th row, or an iterator state returned by the x1sx.CellRange ()
function. Optionally, you can also pass the index of the worksheet to use in the optional
sheet parameter (starting from 1 for the first worksheet). If the sheet parameter is
omitted, the worksheet set by x1sx.SetDefaultSheet () will be used.

Note that this function will fail in case the cell doesn’t have a formula. You can use
x1lsx.HaveCellFormula() to check if the cell has got a formula.

INPUTS
id identifier of the XLSX document to use
X column index of the cell to use (starting from 1)
y row index of the cell to use (starting from 1)
ref cell reference (e.g. "A1" or an iterator state), only used when x and y are
omitted
sheet optional: index of the worksheet to use (defaults to the index of the default
worksheet)
RESULTS

£$ the cell’s formula

Chapter 4: Function reference 13

4.10 xlsx.GetCellReference

NAME
xlsx.GetCellReference — get cell reference

SYNOPSIS
ref = xlsx.GetCellReference(id, x, y[, xyref, sheet])
ref = xlsx.GetCellReference(id, ref[, xyref, sheet])

FUNCTION
This function returns a reference to the specified cell, either as a column/row reference
or an alphanumerical cell id. If the xyref parameter is set to True, the cell reference
will be returned as a pair of column (x) and row (y) coordinates to the cell. If xyref is
set to False (also the default), the cell reference will be returned as an alphanumerical
string containing column and row identifier of the cell, e.g. "A1".

There are two ways of specifying the cell whose reference should be returned: You can
either specify the cell to use by passing the cell’s column (x) and row (y) position in
the x and y arguments. Those positions start from 1 for the first column and row.
Alternatively, you can also specify the cell by passing its reference in the ref param-
eter. This can either be a string, e.g. "A10" for the first cell in the 10th row, or an
iterator state returned by the x1sx.CellRange() function. Optionally, you can also
pass the index of the worksheet to use in the optional sheet parameter (starting from
1 for the first worksheet). If the sheet parameter is omitted, the worksheet set by
x1lsx.SetDefaultSheet () will be used.

INPUTS
id identifier of the XLSX document to use
X column index of the cell to use (starting from 1)
y row index of the cell to use (starting from 1)
ref cell reference (e.g. "A1" or an iterator state), only used when x and y are
omitted
xyref True if you want the reference as a pair of column/row coordinates or False
if you want the reference as an alphanumerical string (defaults to False)
sheet optional: index of the worksheet to use (defaults to the index of the default
worksheet)
RESULTS
ref the cell reference

4.11 xlsx.GetCellValue

NAME
xlsx.GetCellValue — get cell value

SYNOPSIS
v, t = xlsx.GetCellValue(id, x, y[, sheetl])
v, t = xlsx.GetCellValue(id, ref[, sheet])

14 XLSX plugin manual

FUNCTION

This function returns the value of a certain cell. There are two ways of specifying the
cell whose value should be returned: You can either specify the cell to use by passing
the cell’s column (x) and row (y) position in the x and y arguments. Those positions
start from 1 for the first column and row. Alternatively, you can also specify the cell
by passing its reference in the ref parameter. This can either be a string, e.g. "A10"
for the first cell in the 10th row, or an iterator state returned by the x1sx.CellRange ()
function. Optionally, you can also pass the index of the worksheet to use in the optional
sheet parameter (starting from 1 for the first worksheet). If the sheet parameter is
omitted, the worksheet set by x1sx.SetDefaultSheet () will be used.

x1lsx.GetCellValue () returns two values: The actual cell value in the first return value
and the cell value type in the second return value. The return value type will be one of
the following special constants:

#INTEGER An integer number.

#DOUBLE A floating point value.

#STRING A string value.

#BOOLEAN A boolean value (either True or False).

#NIL The cell is empty.

#VOID Indicates an invalid value, e.g. NaN or a logical error like division by zero.

Note that when trying to get the values of many cells it’s usually much faster to use the
x1lsx.CellRange () function together with a generic for loop to iterate over the desired
cells. This is especially recommended when dealing with large XLSX documents that
have thousands of cells.

INPUTS
id identifier of the XLSX document to use
X column index of the cell to use (starting from 1)
y row index of the cell to use (starting from 1)
ref cell reference (e.g. "A1" or an iterator state), only used when x and y are
omitted
sheet optional: index of the worksheet to use (defaults to the index of the default
worksheet)
RESULTS
v cell value
t type of the cell value (see above for possible types)
EXAMPLE

x1lsx.0pen(1l, "test.xlsx")
cols = xlsx.GetColumnCount (1)
rows = x1lsx.GetRowCount (1)
For Local y = 1 To rows

For Local x = 1 to cols

Chapter 4: Function reference 15

DebugPrint ((x1sx.GetCellValue (1, x, y)))
Next
DebugPrint ("skkkskskskskkskkkskokokkkkkkokkk*x ")

Next
x1lsx.Close(1)

The code above opens test.xlsx and prints the values of all cells.

4.12 xlsx.GetColumnCount

NAME

xlsx.GetColumnCount — get number of worksheet columns
SYNOPSIS

cols = x1sx.GetColumnCount(id[, idx])
FUNCTION

This function returns the number of columns in the worksheet that is at the index
specified by idx in the XLSX document. If the idx argument is omitted, the default
worksheet set using x1sx.SetDefaultSheet () will be used. Worksheet indices start at
1 for the first worksheet.

INPUTS
id identifier of the XLSX document to use
idx optional: index of worksheet to query (defaults to the index of the default
worksheet)
RESULTS
Tows number of columns in the specified worksheet

4.13 xlsx.GetColumnWidth

NAME

xlsx.GetColumnWidth — get column width
SYNOPSIS

width = xlsx.GetColumnWidth(id, col[, sheet])
FUNCTION

This function returns the width of the column specified in col. Column indices start at
1. The width is returned in font units of the normal display font and can be a fractional
value. Optionally, you can also pass the index of the worksheet to use in the optional
sheet parameter (starting from 1 for the first worksheet). If the sheet parameter is
omitted, the worksheet set by x1sx.SetDefaultSheet () will be used.

INPUTS
id identifier of the XLSX document to use

col column index to use (starting from 1)

16 XLSX plugin manual

sheet optional: index of the worksheet to use (defaults to the index of the default
worksheet)
RESULTS
width column width in font units

4.14 xlIsx.GetObjectType

NAME

xlsx.GetObjectType — get XLSX document object type
SYNOPSIS

type = xlsx.GetObjectType()
FUNCTION

This function returns the object type used by XLSX documents opened using the
x1sx.0pen() or xlsx.Create() functions. You can then use this object type with
functions from Hollywood’s object library such as GetAttribute(), SetObjectData(),
GetObjectData(), etc.

In particular, Hollywood’s GetAttribute() function may be used to query certain
properties of XLSX documents. The following attributes are currently supported by
GetAttribute () for XLSX documents:

#XLSXATTRSHEETS:
Returns the number of sheets in the XLSX document.
INPUTS
none
RESULTS
type internal XLSX document type for use with Hollywood’s object library
EXAMPLE

x1lsx.0Open(1l, "test.xlsx")
XLSX_DOCUMENT = xlsx.GetObjectType()
numsheets = GetAttribute (XLSX_DOCUMENT, 1, #XLSXATTRSHEETS)

The code above opens test.x1lsx and queries the number of sheets in the document via
GetAttribute().

4.15 xlIsx.GetProperty

NAME
xlsx.GetProperty — get document property

SYNOPSIS
val$ = xlsx.GetProperty(id, prop)

Chapter 4: Function reference 17

FUNCTION
This function allows you to get the value of the document property specified by prop.
The prop parameter must be one of the following special constants:

#XLSX_PROPERTY_TITLE
#XLSX_PROPERTY_SUBJECT
#XLSX_PROPERTY_CREATOR
#XLSX_PROPERTY_KEYWORDS
#XLSX_PROPERTY_DESCRIPTION
#XLSX_PROPERTY_LASTMODIFIEDBY
#XLSX_PROPERTY_LASTPRINTED
#XLSX_PROPERTY_CREATIONDATE
#XLSX_PROPERTY_MODIFICATIONDATE
#XLSX_PROPERTY_CATEGORY
#XLSX_PROPERTY_APPLICATION
#XLSX_PROPERTY_DOCSECURITY
#XLSX_PROPERTY_SCALECROP
#XLSX_PROPERTY_MANAGER
#XLSX_PROPERTY_COMPANY
#XLSX_PROPERTY_LINKSUPTODATE
#XLSX_PROPERTY_SHAREDDOC
#XLSX_PROPERTY_HYPERLINKBASE
#XLSX_PROPERTY_HYPERLINKSCHANGED
#XLSX_PROPERTY_APPVERSION

INPUTS

id identifier of the XLSX document to use

prop property to get (see above for possible values)
RESULTS

val$ value of property

4.16 xlsx.GetRowCount

NAME

xlsx.GetRowCount — get number of worksheet rows
SYNOPSIS

rows = xlsx.GetRowCount(id[, idx])
FUNCTION

This function returns the number of rows in the worksheet that is at the index specified
by idx in the XLSX document. If the idx argument is omitted, the default worksheet
set using x1sx.SetDefaultSheet () will be used. Worksheet indices start at 1 for the
first worksheet.

INPUTS
id identifier of the XLSX document to use

18 XLSX plugin manual

idx optional: index of worksheet to query (defaults to the index of the default
worksheet)
RESULTS
rows number of rows in the specified worksheet

4.17 xlsx.GetRowHeight

NAME

xlsx.GetRowHeight — get row height
SYNOPSIS

height = xlsx.GetRowHeight(id, row[, sheet])
FUNCTION

This function returns the height of the row specified in row. Row indices start at 1. The
height is returned in font units of the normal display font and can be a fractional value.
Optionally, you can also pass the index of the worksheet to use in the optional sheet
parameter (starting from 1 for the first worksheet). If the sheet parameter is omitted,
the worksheet set by x1sx.SetDefaultSheet () will be used.

INPUTS
id identifier of the XLSX document to use
row row index to use (starting from 1)
sheet optional: index of the worksheet to use (defaults to the index of the default
worksheet)
RESULTS

height row height in font units

4.18 xlIsx.GetSheetCount

NAME

xlsx.GetSheetCount — get number of worksheets in document
SYNOPSIS

n = x1lsx.GetSheetCount (id)
FUNCTION

This function returns the number of worksheets in the XLSX document specified by id.
Since there cannot be XLSX documents without any worksheets, the return value will
always be at least 1.

INPUTS
id identifier of the XLSX document to use

RESULTS
n number of workshhets in the XLSX document

Chapter 4: Function reference 19

4.19 xlsx.GetSheetIndex

NAME
xlsx.GetSheetIndex — get worksheet index

SYNOPSIS
idx = x1sx.GetSheetIndex(id, name$)

FUNCTION
This function returns the position of the worksheet specified by name$ in the XLSX
document specified by id. Worksheet indices start at 1. If the worksheet can’t be found
in the XLSX document, 0 will be returned.

INPUTS

id identifier of the XLSX document to use

name$ name of the worksheet whose position should be retrieved
RESULTS

idx position of the worksheet or 0 if not found

4.20 xlsx.GetSheetName

NAME
xlsx.GetSheetName — get worksheet name

SYNOPSIS
name$ = xlsx.GetSheetName(id, idx)

FUNCTION
This function returns the name of the worksheet at the position specified by idx. Work-
sheet indices start at 1.

INPUTS

id identifier of the XLSX document to use

idx position of the worksheet whose name should be retrieved
RESULTS

name$ name of the worksheet at the specified position

4.21 xlsx.GetSheetType

NAME
xlsx.GetSheetType — get worksheet type

SYNOPSIS
type = xlsx.GetSheetType(id, idx)

20 XLSX plugin manual

FUNCTION
This function returns the type of the worksheet at the position specified by idx. Work-
sheet indices start at 1. The return value will be one of the following constants:

#XLSX_SHEETTYPE_WORKSHEET
A normal worksheet.

#XLSX_SHEETTYPE_CHARTSHEET
A chart worksheet.

#XLSX_SHEETTYPE_DIALOGSHEET
A dialog worksheet.

#XLSX_SHEETTYPE_MACROSHEET
A macro worksheet.

INPUTS

id identifier of the XLSX document to use

idx position of the worksheet whose type should be retrieved (starting from 1)
RESULTS

type type of the worksheet at the specified position

4.22 xlsx.GetSheet Visibility

NAME

xlsx.GetSheet Visibility — get sheet visibility
SYNOPSIS

vis = xlsx.GetSheetVisibility(id[, sheet])
FUNCTION

This function can be used to get the visibility state of the worksheet specified by the
sheet parameter. The return value will be one of the following special constants:

#XLSX_VISIBILITY_VISIBLE
The sheet is visible.

#XLSX_VISIBILITY_HIDDEN
The sheet is hidden but can be unhidden by users opening the XLSX file in
a spreadsheet app.

#XLSX_VISIBILITY_VERYHIDDEN
The sheet is hidden and can’t be unhidden by users opening the XLSX file
in a spreadsheet app.

The sheet parameter is optional. If it is omitted, the worksheet set by
x1lsx.SetDefaultSheet () will be used. Sheet indices start at 1 for the first worksheet.

INPUTS
id identifier of the XLSX document to use

Chapter 4: Function reference 21

sheet optional: index of the worksheet to (un)select (defaults to the index of the
default worksheet)

RESULTS

vis sheet visibility state (see above for possible values)

4.23 xlsx.HaveCellFormula

NAME
xlsx.HaveCellFormula — check if cell has a formula

SYNOPSIS
bool = xlsx.HaveCellFormula(id, x, y[, sheet])
bool = xlsx.HaveCellFormula(id, ref[, sheet])

FUNCTION

This function returns True if the specified cell has a formula, otherwise False is returned.
There are two ways of specifying the cell you want to check: You can either specify the
cell to use by passing the cell’s column (x) and row (y) position in the x and y arguments.
Those positions start from 1 for the first column and row. Alternatively, you can also
specify the cell by passing its reference in the ref parameter. This can either be a
string, e.g. "A10" for the first cell in the 10th row, or an iterator state returned by the
x1lsx.CellRange() function. Optionally, you can also pass the index of the worksheet
to use in the optional sheet parameter (starting from 1 for the first worksheet). If
the sheet parameter is omitted, the worksheet set by x1sx.SetDefaultSheet () will be
used.

INPUTS
id identifier of the XLSX document to use
X column index of the cell to use (starting from 1)
y row index of the cell to use (starting from 1)
ref cell reference (e.g. "A1" or an iterator state), only used when x and y are
omitted
sheet optional: index of the worksheet to use (defaults to the index of the default
worksheet)
RESULTS
bool True if the cell has a formula, False otherwise

4.24 xlsx.HideColumn

NAME
xlsx.HideColumn — show or hide a column

SYNOPSIS
x1sx.HideColumn(id, col, hidden[, sheet])

22 XLSX plugin manual

FUNCTION
This function can be used to show or hide the column specified by col. Column indices
start at 1. The hidden argument must be set to True to hide the column or False to
unhide it. Optionally, you can also pass the index of the worksheet to use in the optional
sheet parameter (starting from 1 for the first worksheet). If the sheet parameter is
omitted, the worksheet set by x1sx.SetDefaultSheet () will be used.

INPUTS
id identifier of the XLSX document to use
col column index to use (starting from 1)
hidden True to hide the column, False to show it
sheet optional: index of the worksheet to use (defaults to the index of the default

worksheet)

4.25 xlsx.HideRow

NAME

xlsx.HideRow — show or hide a row
SYNOPSIS

x1lsx.HideRow(id, row, hidden[, sheet])
FUNCTION

This function can be used to show or hide the row specified by row. Row indices start
at 1. The hidden argument must be set to True to hide the row or False to unhide it.
Optionally, you can also pass the index of the worksheet to use in the optional sheet
parameter (starting from 1 for the first worksheet). If the sheet parameter is omitted,
the worksheet set by x1sx.SetDefaultSheet () will be used.

INPUTS
id identifier of the XLSX document to use
row row index to use (starting from 1 for the first row)
hidden True to hide the row, False to show it
sheet optional: index of the worksheet to use (defaults to the index of the default

worksheet)

4.26 xlsx.IsColumnHidden

NAME
xlsx.IsColumnHidden — get column visibility state

SYNOPSIS
hidden = xlsx.IsColumnHidden(id, col[, sheet])

Chapter 4: Function reference 23

FUNCTION
This function returns True if the column at index col is currently hidden or False if
it is visible. Column indices start at 1. Optionally, you can also pass the index of the
worksheet to use in the optional sheet parameter (starting from 1 for the first worksheet).
If the sheet parameter is omitted, the worksheet set by x1sx.SetDefaultSheet () will
be used.

INPUTS
id identifier of the XLSX document to use
col column index to use (starting from 1)
sheet optional: index of the worksheet to use (defaults to the index of the default
worksheet)
RESULTS
hidden True if the column is hidden, False otherwise

4.27 xlsx.IsRowHidden

NAME

xlsx.IsRowHidden — get row visibility state
SYNOPSIS

hidden = xlsx.IsRowHidden(id, row[, sheet])
FUNCTION

This function returns True if the row at index row is currently hidden or False if it is
visible. Row indices start at 1. Optionally, you can also pass the index of the worksheet
to use in the optional sheet parameter (starting from 1 for the first worksheet). If
the sheet parameter is omitted, the worksheet set by x1sx.SetDefaultSheet () will be
used.

INPUTS
id identifier of the XLSX document to use
row row index to use (starting from 1)
sheet optional: index of the worksheet to use (defaults to the index of the default
worksheet)
RESULTS
hidden True if the row is hidden, False otherwise

4.28 xlsx.IsSheetActive

NAME

xlsx.IsSheet Active — check if sheet is active

SYNOPSIS

active

x1sx.IsSheetActive(id[, sheet])

24 XLSX plugin manual

FUNCTION
This function returns True if the worksheet specified by sheet is active, False
otherwise. The sheet parameter is optional. If it is omitted, the worksheet set by
x1lsx.SetDefaultSheet () will be used. Sheet indices start at 1 for the first worksheet.

INPUTS
id identifier of the XLSX document to use
sheet optional: index of the worksheet to use (defaults to the index of the default
worksheet)
RESULTS
active True if the sheet is active, False otherwise

4.29 xlsx.IsSheetSelected

NAME

xlsx.IsSheetSelected — check if sheet is selected
SYNOPSIS

sel = xlsx.IsSheetSelected(id[, sheet])
FUNCTION

This function returns True if the worksheet specified by sheet is selected, False
otherwise. The sheet parameter is optional. If it is omitted, the worksheet set by
x1lsx.SetDefaultSheet () will be used. Sheet indices start at 1 for the first worksheet.

INPUTS
id identifier of the XLSX document to use
sheet optional: index of the worksheet to use (defaults to the index of the default
worksheet)
RESULTS
sel True if the sheet is selected, False otherwise

4.30 xlsx.MoveSheet

NAME

xlsx.MoveSheet — change worksheet position
SYNOPSIS

x1lsx.MoveSheet(id, idx, newpos)
FUNCTION

This function can be used to change the position of the worksheet at idx to the position
specified by newpos. Worksheet indices are counted from 1.

INPUTS
id identifier of the XLSX document to use

Chapter 4: Function reference 25

idx worksheet whose position should be changed (starting from 1)

newpos desired new position for the worksheet (starting from 1)

4.31 xlIsx.Open

NAME

xlsx.Open — open an XLSX document for reading and/or writing
SYNOPSIS

[id] = x1lsx.0Open(id, filename$)
FUNCTION

This function attempts to open the XLSX document specified by filename$ and assigns
id to it. If you pass Nil in id, x1sx.0pen() will automatically choose a vacant identifier
and return it. The file specified in filename$ must exist or this function will fail. If you
want to create a new xlsx document, use the x1sx.Create() function.

Although xlIsx.hwp will automatically close all open XLSX documents when it quits, it
is strongly advised that you close an open XLSX document when you are done with it
using the x1sx.Close() function because otherwise you are wasting resources.

Note that xlsx.Open() will create a standard Hollywood object which can also
be used with functions from Hollywood’s object library such as GetAttribute(),
SetObjectData(), GetObjectData(), etc. See Section 4.14 [xlsx.GetObjectType],
page 16, for details.

INPUTS
id identifier for the XLSX document or Nil for auto id selection
filename$
name of the file to open
RESULTS
id optional: identifier of the document; will only be returned when you pass
Nil as argument 1 (see above)
EXAMPLE

x1lsx.0pen(1l, "test.xlsx")
cols = xlsx.GetColumnCount (1)
rows = xlsx.GetRowCount (1)
For Local y = 1 To rows
For Local x = 1 to cols
DebugPrint ((xlsx.GetCellValue(l, x, y)))
Next
DebugPrint ("sskskskskskkkskokkkskkkkokkkkkkxk')
Next
x1lsx.Close(1)

The code above opens test.x1lsx and prints the values of all cells.

26 XLSX plugin manual

4.32 xlIsx.Save

NAME

xlsx.Save — save XLSX document
SYNOPSIS

xlsx.Save(id)
FUNCTION

This function saves the XLSX document specified by id to the file that was specified when
opening the XLSX document using x1sx.0pen() or creating it using x1sx.Create(). If
you want to save the XLSX document to a different location, use x1sx.SaveAs().

Note that this function won’t close the XLSX document. You still need to call
x1lsx.Close() to free all resources associated with the XLSX document.

INPUTS
id identifier for the XLSX document

4.33 xlsx.SaveAs

NAME

xlsx.SaveAs — save XLSX document to new location
SYNOPSIS

xlsx.SaveAs(id, filename$)
FUNCTION

This function saves the XLSX document specified by id to the location specified by
filename$. If you don’t want to save the XLSX document to a new location, use
x1lsx.Save() instead.

Note that this function won’t close the XLSX document. You still need to call
x1sx.Close() to free all resources associated with the XLSX document.

INPUTS
id identifier for the XLSX document

filename$
desired save location for the XLSX document

4.34 xlsx.SetCellFormula

NAME
xlsx.SetCellFormula — set cell formula

SYNOPSIS
xlsx.SetCellFormula(id, x, y, £$[, sheet])
x1lsx.SetCellFormula(id, ref, £f$[, sheet])

Chapter 4: Function reference 27

FUNCTION

This function sets the formula of the specified cell to the one specified in £$. After
calling this function, x1sx.HaveCellFormula() will return True. There are two ways
of specifying the cell whose value should be set: You can either specify the cell to use
by passing the cell’s column (x) and row (y) position in the x and y arguments. Those
positions start from 1 for the first column and row. Alternatively, you can also specify the
cell by passing its reference in the ref parameter. This can either be a string, e.g. "A10"
for the first cell in the 10th row, or an iterator state returned by the x1sx.CellRange ()
function. Optionally, you can also pass the index of the worksheet to use in the optional
sheet parameter (starting from 1 for the first worksheet). If the sheet parameter is
omitted, the worksheet set by x1sx.SetDefaultSheet () will be used.

Note that the formula must be specified without the equal sign, e.g. you have to use
"A1+A2" instead of "=A1+A2". Also note that the XLSX plugin won’t compute the
result of the formula, i.e. you can’t expect x1sx.GetCellValue() to get the computation
result after setting a cell formula. To have formula values computed, you need to open
the XLSX document in Excel or LibreOffice’s Calc and save it.

INPUTS
id identifier of the XLSX document to use
X column index of the cell to use (starting from 1)
y row index of the cell to use (starting from 1)
ref cell reference (e.g. "A1" or an iterator state), only used when x and y are
omitted
£$ desired cell formula (don’t include the equal sign here)
sheet optional: index of the worksheet to use (defaults to the index of the default
worksheet)
EXAMPLE

x1lsx.SetCellFormula(1, "A3", "A1+A2")
The code above sets cell A3 to the sum of cells A1+A2.

4.35 xlsx.SetCellValue

NAME
xlsx.SetCellValue — set cell value

SYNOPSIS
x1lsx.SetCellValue(id, x, y, val[, type, sheet])
x1sx.SetCellValue(id, ref, vall, type, sheet])

FUNCTION
This function sets the value of the specified cell to the value specified in val. There are
two ways of specifying the cell whose value should be set: You can either specify the cell
to use by passing the cell’s column (x) and row (y) position in the x and y arguments.
Those positions start from 1 for the first column and row. Alternatively, you can also

28 XLSX plugin manual

specify the cell by passing its reference in the ref parameter. This can either be a
string, e.g. "A10" for the first cell in the 10th row, or an iterator state returned by the
x1lsx.CellRange () function. Optionally, you can also pass the index of the worksheet
to use in the optional sheet parameter (starting from 1 for the first worksheet). If
the sheet parameter is omitted, the worksheet set by x1sx.SetDefaultSheet () will be
used.

Optionally, you can also specify the value type in the type argument. Normally, this is
not necessary since xlsx.SetCellValue() will determine the value type based on the
type of the argument you pass in val but since Hollywood doesn’t distinguish between
boolean, integer, and floating point values it might be necessary to pass the type pa-
rameter in order to make sure the cell is set to the desired type. The type parameter
can be one of the following special constants:

#INTEGER An integer value.

#DOUBLE A floating point value.

#STRING A string value.

#BOOLEAN A boolean value (either True or False).
#NIL This is a special type that will clear the cell.

Note that when trying to get the values of many cells it’s usually much faster to use the
x1lsx.CellRange () function together with a generic for loop to iterate over the desired
cells. This is especially recommended when dealing with large XLSX documents that
have thousands of cells.

INPUTS
id identifier of the XLSX document to use
X column index of the cell to use (starting from 1)
y row index of the cell to use (starting from 1)
ref cell reference (e.g. "A1" or an iterator state), only used when x and y are
omitted
val desired cell value
type optional: type of the value (see above for possible constants)
sheet optional: index of the worksheet to use (defaults to the index of the default
worksheet)
EXAMPLE

xlsx.Create(1, "test.xlsx")
For Local y = 1 To 100
For Local x = 1 to 30
xlsx.SetCellValue(l, x, y, "Cell " .. x .. "/" .. y)
Next
Next
xlsx.Save(1)
x1lsx.Close(1)

Chapter 4: Function reference 29

The code above will create a new XLSX document and add 30 columns and 100 rows to
it. The document will be saved as test.xlsx.

4.36 xlsx.SetColumnWidth

NAME

xlsx.SetColumnWidth — set column width
SYNOPSIS

xlsx.SetColumnWidth(id, col, width[, sheet])
FUNCTION

This function sets the width of the column specified in col to width. Column indices
start at 1. The width is specified in font units of the normal display font and can be
a fractional value. Optionally, you can also pass the index of the worksheet to use in
the optional sheet parameter (starting from 1 for the first worksheet). If the sheet
parameter is omitted, the worksheet set by x1sx.SetDefaultSheet () will be used.

INPUTS
id identifier of the XLSX document to use
col column index to use (starting from 1)
width desired column width in font units
sheet optional: index of the worksheet to use (defaults to the index of the default
worksheet)
EXAMPLE

x1sx.SetColumnWidth(1l, 1, 8.43)
The code above sets the width of the first column to 8.43.

4.37 xlsx.SetDefaultSheet

NAME

xlsx.SetDefaultSheet — set default worksheet
SYNOPSIS

x1lsx.SetDefaultSheet (id, idx)
FUNCTION

This function can be used to set the default worksheet for the XLSX document specified
by id. An XLSX document’s default worksheet is the worksheet that is to be used in case
no worksheet is explicitly specified when calling functions like x1sx.SetCellValue() or
x1lsx.GetCellValue(). You need to pass the position of the desired default worksheet
in the idx argument. Worksheet indices start at 1 for the first worksheet.

By default, the first worksheet in the XLSX document is the default worksheet.

INPUTS
id identifier of the XLSX document to use

30

XLSX plugin manual

idx position of the worksheet that should be made the default (starting from 1)

4.38 xlsx.SetProperty

NAME

xlsx.SetProperty — set document property

SYNOPSIS

x1lsx.SetProperty(id, prop, val$)

FUNCTION
This function allows you to set the document property specified by prop to the value
specified by val$. The prop parameter must be one of the following special constants:

INPUTS
id identifier of the XLSX document to use
prop property to set (see above for possible values)
val$ desired value for property

#XLSX_PROPERTY_TITLE
#XLSX_PROPERTY_SUBJECT
#XLSX_PROPERTY_CREATOR
#XLSX_PROPERTY_KEYWORDS
#XLSX_PROPERTY_DESCRIPTION

#XLSX_PROPERTY_LASTMODIFIEDBY

#XLSX_PROPERTY_LASTPRINTED

#XLSX_PROPERTY_CREATIONDATE
#XLSX_PROPERTY_MODIFICATIONDATE

#XLSX_PROPERTY_CATEGORY
#XLSX_PROPERTY_APPLICATION
#XLSX_PROPERTY_DOCSECURITY
#XLSX_PROPERTY_SCALECROP
#XLSX_PROPERTY_MANAGER
#XLSX_PROPERTY_COMPANY

#XLSX_PROPERTY_LINKSUPTODATE

#XLSX_PROPERTY_SHAREDDOC

#XLSX_PROPERTY_HYPERLINKBASE
#XLSX_PROPERTY_HYPERLINKSCHANGED

#XLSX_PROPERTY_APPVERSION

4.39 xlIsx.SetRowHeight
NAME

xlsx.SetRowHeight — set row height

SYNOPSIS

x1lsx.SetRowHeight (id, row, height[, sheet])

Chapter 4: Function reference 31

FUNCTION
This function sets the height of the row specified in row to height. Row indices start at
1. The height is specified in font units of the normal display font and can be a fractional
value. Optionally, you can also pass the index of the worksheet to use in the optional
sheet parameter (starting from 1 for the first worksheet). If the sheet parameter is
omitted, the worksheet set by x1sx.SetDefaultSheet () will be used.

INPUTS
id identifier of the XLSX document to use
row row index to use (starting from 1)

height desired row height in font units

sheet optional: index of the worksheet to use (defaults to the index of the default
worksheet)

EXAMPLE
x1lsx.SetRowHeight (1, 1, 12.75)

The code above sets the height of the first row to 12.75.

4.40 xlIsx.SetSheetActive

NAME

xlsx.SetSheetActive — make sheet active
SYNOPSIS

x1sx.SetSheetActive(id[, sheet])
FUNCTION

This function makes the worksheet specified by the sheet parameter the active
one. The sheet parameter is optional. If it is omitted, the worksheet set by
x1sx.SetDefaultSheet () will be used. Sheet indices start at 1 for the first worksheet.

INPUTS
id identifier of the XLSX document to use
sheet optional: index of the worksheet to make the active one (defaults to the

index of the default worksheet)

4.41 xlsx.SetSheetName

NAME

xlsx.SetSheetName — set worksheet name
SYNOPSIS

x1sx.SetSheetName(id, idx, name$)
FUNCTION

This function sets the name of the worksheet at the position specified by idx to the
string passed in name$. Worksheet positions start at 1.

32 XLSX plugin manual

INPUTS
id identifier of the XLSX document to use
idx position of the worksheet whose name should be set
name$ desired worksheet name

4.42 xlsx.SetSheetSelected

NAME

xlsx.SetSheetSelected — select or unselect sheet
SYNOPSIS

x1sx.SetSheetSelected(id, sel[, sheet])
FUNCTION

This function can be used to select or unselect the worksheet specified by the sheet
parameter. If the sel parameter is set to True, the sheet will be selected, otherwise it
will be unselected. The sheet parameter is optional. If it is omitted, the worksheet set by
x1sx.SetDefaultSheet () will be used. Sheet indices start at 1 for the first worksheet.

INPUTS
id identifier of the XLSX document to use
sel True to select the sheet, False to unselect it
sheet optional: index of the worksheet to (un)select (defaults to the index of the

default worksheet)

4.43 xlsx.SetSheetVisibility

NAME

xlsx.SetSheet Visibility — set sheet visibility
SYNOPSIS

x1sx.SetSheetVisibility(id, vis[, sheet])
FUNCTION

This function can be used to set the visibility state of the worksheet specified by the
sheet parameter. The vis parameter must be one of the following special constants:

#XLSX_VISIBILITY_VISIBLE
The sheet is visible.

#XLSX_VISIBILITY_HIDDEN
The sheet is hidden but can be unhidden by users opening the XLSX file in
a spreadsheet app.

#XLSX_VISIBILITY_VERYHIDDEN
The sheet is hidden and can’t be unhidden by users opening the XLSX file
in a spreadsheet app.

Chapter 4: Function reference 33

The sheet parameter is optional. If it is omitted, the worksheet set by
x1sx.SetDefaultSheet () will be used. Sheet indices start at 1 for the first worksheet.

INPUTS
id identifier of the XLSX document to use
vis desired sheet visibility state (see above for possible values)
sheet optional: index of the worksheet to (un)select (defaults to the index of the

default worksheet)

4.44 xlsx.UseSharedStrings

NAME

xlsx.UseSharedStrings — toggle shared string mode
SYNOPSIS

x1sx.UseSharedStrings(on)
FUNCTION

This function allows you to control whether or not strings assigned to cells should be
stored in a global shared string table in the XLSX or whether they should be embedded
individually in the cell nodes. It’s typically more efficient to use a global shared string
table because identical strings only need to be stored once in that table which will
decrease the file size in case there are many identical strings. If for some reason you
don’t want to use a global shared string table, you can use x1sx.UseSharedStrings()
to disable this functionality by passing False in the on parameter.

Note that this function will only be effective when adding new strings to a document.
If you're opening a document that uses shared strings and save it again, it will still
keep its shared strings, even if you have disabled shared string mode using this function.
x1sx.UseSharedStrings () will only affect new strings added to the document.

By default the global shared string table is enabled.

INPUTS
on True to enable the global shared string table, False to disable it

35

Appendix A Licenses

A.1 OpenXLSX license

Copyright (c) 2020, Kenneth Troldal Balslev All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:
— Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer.
— Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

— Neither the name of the copyright holder nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

A.2 pugixml license

Copyright (c) 2006-2022 Arseny Kapoulkine

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

36 XLSX plugin manual

A.3 MiniZ license

Copyright 2013-2014 RAD Game Tools and Valve Software
Copyright 2010-2014 Rich Geldreich and Tenacious Software LLC
All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

37

Index

x1lsx.AddSheet...... ...t 7 x1sx.HaveCellFormulacouun.. 21
x1sx.CellRangecovvnurneeenneeennnn 7 xlsx.HideColummcovvuuieiennnnnneennn. 21
x1lsx.ClearCellFormulacoovuenn.n. 8 x1sx.HideROW.. ...t 22
xlsx.ClearCellValue............c.oovvununenn... 9 x1lsx.IsColumnHidden.......................... 22
XL1SX.CLlOoSe . ittt e 10 x1lsx.IsRowHidden..............t 23
x1lsx.Create. ..ot 10 x1lsx.IsSheetActive.......... ..., 23
x1lsx.DeleteProperty..........ccovuiiiinnnn.. 11 x1lsx.IsSheetSelectedcovvvnnnnn. 24
xlsx.DeleteSheet ..., 11 xlsx.MoveSheett 24
xlsx.GetCellFormula.c.ovuruunnnnnnn. 12 X1SX.0pen ...t 25
x1lsx.GetCellReference 12 XS X . SaAVE o ittt e 25
xlsx.GetCellValue...........oovvivninnnnnn.. 13 X1SX.SaVeAS . ..ot 26
x1sx.GetColumnCount...........ovvveunennn... 15 x1lsx.SetCellFormula..........covvvuuneunnnnn. 26
x1sx.GetColumnWidth.......................... 15 xlsx.SetCellValue..........coviiennnnnnnnnn. 27
x1lsx.GetObjectType..........cooviiiii ... 16 x1lsx.SetColumnWidth.......................... 29
xlsx.GetProperty....... ..., 16 xlsx.SetDefaultSheet 29
xlsx.GetRowCountccovuunnnnnnnn.. 17 x1lsx.SetProperty............ooiiiiii, 30
xlsx.GetRowHeight............................ 18 xlsx.SetRowHeight............... 30
x1sx.GetSheetCount...............ccoivnon... 18 x1lsx.SetSheetActive.......... ..., 31
x1sx.GetSheetIndex.........oovvviinennnnnnn.. 18 xlsx.SetSheetName..............coiivinnn.... 31
x1sx.GetSheetName............................ 19 x1sx.SetSheetSelected 32
xlsx.GetSheetType............................ 19 x1lsx.SetSheetVisibility..................... 32

x1lsx.GetSheetVisibility...............ouit. 20 x1lsx.UseSharedStrings 33

	General information
	Introduction
	Terms and conditions
	Requirements
	Installation

	About xlsx.hwp
	Credits
	Frequently asked questions
	Known issues
	Future
	History

	Usage
	Interfaces
	Library interface
	Serialization interface

	Function reference
	xlsx.AddSheet
	xlsx.CellRange
	xlsx.ClearCellFormula
	xlsx.ClearCellValue
	xlsx.Close
	xlsx.Create
	xlsx.DeleteProperty
	xlsx.DeleteSheet
	xlsx.GetCellFormula
	xlsx.GetCellReference
	xlsx.GetCellValue
	xlsx.GetColumnCount
	xlsx.GetColumnWidth
	xlsx.GetObjectType
	xlsx.GetProperty
	xlsx.GetRowCount
	xlsx.GetRowHeight
	xlsx.GetSheetCount
	xlsx.GetSheetIndex
	xlsx.GetSheetName
	xlsx.GetSheetType
	xlsx.GetSheetVisibility
	xlsx.HaveCellFormula
	xlsx.HideColumn
	xlsx.HideRow
	xlsx.IsColumnHidden
	xlsx.IsRowHidden
	xlsx.IsSheetActive
	xlsx.IsSheetSelected
	xlsx.MoveSheet
	xlsx.Open
	xlsx.Save
	xlsx.SaveAs
	xlsx.SetCellFormula
	xlsx.SetCellValue
	xlsx.SetColumnWidth
	xlsx.SetDefaultSheet
	xlsx.SetProperty
	xlsx.SetRowHeight
	xlsx.SetSheetActive
	xlsx.SetSheetName
	xlsx.SetSheetSelected
	xlsx.SetSheetVisibility
	xlsx.UseSharedStrings

	Licenses
	OpenXLSX license
	pugixml license
	MiniZ license

	Index

